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Cancer is the ultimate disorder of the genome, characterised 
not by just one or two mutations, but by hundreds to thousands 
of acquired mutations that have been accrued through the 
development of a tumour. Thanks to the recent increase in the 
speed of sequencing offered by modern sequencing technologies, 
we are no longer restricted to exploring tiny fragments of protein-
coding portions of the human genome. We can now read all the 
genetic material in human cells. Here, the framework of a next-
generation sequencing experiment is explained, giving insight into 
the advances and diffi culties posed by processing the enormous 
datasets generated through these methods. Some of the recent 
insights into tumour biology, that exploit the extraordinary surge 
in scale and the digital nature of next-generation sequencing, 
are highlighted, including cancer gene discovery, the detection 
of mutation signatures and cancer evolution. Technological and 
intellectual developments are starting to shape the personalized 
cancer genomic profi les of tomorrow. Let’s train the next-
generation of clinicians to be able to read them from today. 
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Introduction

The genetic material in cells is prone to mutation. From the 
moment of conception, a fertilised egg containing a single 
copy of the human genome will undergo many thousand cell 
divisions, potentially acquiring mutations with each round 
of replication. In addition, the baby that is born and grows 
to adulthood will, through its life, be exposed to several 
endogenous DNA mutagenic processes, such as reactive by-
products of cellular metabolism and enzymatic degradation, 
as well as a variety of exogenous DNA mutagens, such as 
ultraviolet radiation and various chemical compounds. 

Human cancers are known to be highly mutated entities1 with 
marked genetic differences when compared with the original 
genome at conception. The genome of a cancer will carry all 
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the mutations that have been acquired by the cell that became 
the malignant clone, which includes premalignant mutations as 
well as mutations accrued during tumourigenesis.1–3 Therefore, 
a cancer genome is a historical record of the mutagenic 
processes that have occurred through the life of the patient with 
cancer. A few of those mutations (<10) are thought to confer a 
selective proliferative advantage to the cell that fi rst gave rise to 
the cancer clone and are referred to as ‘driver’ mutations.1 Most 
mutations in a cancer are simply bystander events, ‘passenger’ 
mutations that arise because of the damage that the cell has 
been subjected to through tumour development or because of 
the failure of cellular repair pathways to manage physiological 
quantities of damage.1–3 Despite not being causative for cancer, 
passenger mutations report on the biological perturbations that 
have occurred through the life of the patient with cancer.2,3

Using modern sequencing approaches to read cancer 
genomes

The advent of modern sequencing approaches, namely next-
generation sequencing (NGS) technology,4 has resulted in an 
extraordinary increase in the speed and scale of sequencing 
the human genome. No longer are we restricted to exploring 
small polymerase chain reaction (PCR)-defi ned portions of 
the genome (<750 base pairs (bp) per PCR);5,6 current large-
scale resequencing approaches are able to explore a subset of 
genes of interest (targeted sequencing), all protein-coding 
exons (exome sequencing) or even whole cancer genomes 
(whole-genome sequencing (WGS)), in a single experiment.7,8

In essence, two samples are required per patient with cancer 
(Fig 1): a DNA sample from the cancer (ie ‘tumour’ DNA that 
is representative of the cancer clone, although some degree 
of heterogeneity within the cancer population is likely) and 
a DNA sample (ideally) extracted from peripheral blood 
lymphocytes (ie ‘normal’ DNA derived from a heterogeneous 
population of cells and representative of the germline genome). 
Each of the two DNA samples is subjected to independent 
fragmentation to generate many billions of DNA fragments 
per sample.4 A size-selection step is carried out to defi ne the 
fragment size of interest (eg approximately 500 bp for WGS). 
Usually, 100 bp at each end of the 500-bp fragment will be 
sequenced using next-generation approaches to have read each 
base pair of the 3,000,000,000 bases present in the human 
genome, at least 30 times over, in each sample. This paired-end 
high-coverage NGS strategy is a general principle that can be 
modifi ed (eg single-ended sequencing, 50, 75 or 150-bp read 
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lengths or variable fragment sizes) depending on the nature of 
the experiment.

The raw outcome of a sequencing experiment is a dauntingly 
enormous collection of fragments of DNA that require alignment 
back to the reference genome to make a sensible and contiguous 
human genome (Fig 2).9 The basic tenet of identifying somatic 
mutations in cancer genomes relies on identifying differences in 
the genetic material of the tumour and normal sample relative 
to the reference genome (Fig 2). The tumour sample will contain 
acquired somatic mutations as well as germline variation (Fig 2). 

Subtraction of the germline variation identifi ed in the normal 
sample will result in a fi nal catalogue of somatic variants present 
in the cancer of a patient (Fig 2).

The process described here cannot be achieved without 
bioinformatic approaches, that is, a set of algorithms that help to 
perform alignment9 and mutation calling in a fast and effi cient 
manner (Fig 3) (myriad different software packages have been 

Fig 1. Principle of a paired-end NGS experiment. DNA samples are obtained from the cancer and from matched peripheral blood lymphocytes for each 

patient. In the library preparation phase, the DNA samples are independently fragmented into billions of pieces and prepared for the sequencing process 

(repair of ends of DNA fragments and ligation of sequencing adaptors). A size-selection step (which can now be performed using different methods and not 

just slicing following gel electrophoresis) is performed to obtain desired fragment sizes (here, 500 bp) to make a NGS library. Each library contains billions 

of fragments of DNA and is representative of the entire genome of the population of cells in each cancer-matched normal sample. In this method, 100 bp 

at both ends of each approximately 500-bp fragment is sequenced. Each library is sequenced to generate enough raw sequence to ensure an average 

 coverage of 30-fold per reference base in the genome. NGS = next-generation sequencing; bp = base pairs.
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Fig 3. Bioinformatic processing. A schematic of a whole-genome 

sequencing and/or processing strategy for cancers. The two DNA samples 

obtained from each patient are processed into NGS libraries and sequenced 

independently. Raw sequences of the tumour and normal sample are 

aligned back to the reference genome. All classes of somatic mutation, 

including substitutions, insertions and/or deletions, somatic rearrangements 

and copy number aberrations, are sought using a range of bioinformatic 

tools. A high-quality data set requires further fi ltering or post-processing and 

might require validation or resequencing preferably on an alternative plat-

form, of a subset of somatic mutations. Therefore, the fi nal data set used 

for all downstream analyses is a highly curated data set. Note that exome 

and targeted sequencing strategies are not compatible with detection of all 

types of somatic mutation. NGS = next-generation sequencing.

Fig 2. Principle of calling somatic mutations. (a) Millions of short 

NGS reads generated by sequencers are (b) aligned back to the 

 reference genome separately in tumour and normal genomes. (c) All 

differences detected when comparing the tumour with the reference 

genome include somatic (red crosses) and germline variants (purple 

crosses). (d) All differences in the normal genome relative to the 

 reference genome are identified independently (purple crosses). 

(e) The germline polymorphisms in the normal genome are subtracted 

from the tumour genome to generate the catalogue of somatic variants 

for each cancer of each patient. NGS = next-generation sequencing.
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developed to accomplish these tasks). However, the processing 
of raw data, the generation of mutations and the curation of 
such raw data sets demands considerable cost and expertise 
(Fig 3).2 Furthermore, obtaining high-quality catalogues of 
somatic mutation from WGS experiments is more demanding 
than that of whole exome sequence or targeted resequencing 
experiments, troubled by low-complexity sequence of intergenic 
regions, a high degree of repetitive sequence and, in parts, 
a less well-characterised reference genome. Similar to any 
screening tool in medicine, calling mutations in cancer and in 
the germline is not binary; it is based on probabilistic estimates 
and carries a measure of sensitivity as well as a false positive 
rate. Notwithstanding these technical challenges, the advantages 
gained from large-scale sequencing efforts are huge and will be 
summarised in the next section. 

What can be read from a cancer?

Decades of cancer research have been largely focused 
on the discovery of driver mutations in cancer genes, 

causally implicated in oncogenesis, because these become 
targets for developing new therapeutic agents.1 Here, the 
first key contribution of modern large-sale sequencing 
approaches, particularly exome and targeted-sequencing 
strategies, is the marked acceleration of the discovery 
of new cancer genes in recent years.10 Additionally, the 
affordability of sequencing today has resulted in more 
cancers being sequenced per experiment. Thus, rare low-
frequency cancer genes present in common cancers,10–18 as 
well as common cancer genes present in rare cancers,19,20 
are also increasingly being identified. These forays 
into identification of cancer genes demonstrates one 
startling point: that an enormous amount of intertumour 
heterogeneity exists. In an experiment of 100 exome-
sequenced breast cancers, for example, no two individuals 
shared the same set of driver mutations11 (Fig 4). 

However, a cancer contains more than a mere handful 
of driver mutations. Each cancer bears many thousands of 
passenger mutations that might not be causative of cancer 
development but are a rich source of historical information.1,2 
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Fig 4. Cancer genes and intertumour heterogeneity. (a) This image is taken from Stephens et al 11 and depicts the complexity and marked intertumour 

heterogeneity of cancer genes observed among breast cancers alone. These results were obtained from one large-scale NGS experiment of 100 breast 

cancer exomes. Each of the 40 cancer genes mutated in this experiment are documented on the left. The number of mutations in each gene in the 100 

tumours is shown (rows), as is the number of driver mutations in each breast cancer (columns). Point mutations and copy number changes are coloured pink 

and blue, respectively. (b) In a separate whole-genome sequencing experiment involving just 21 different breast cancers, simply taking the total number of 

base substitutions into consideration, the degree of intertumour heterogeneity observed is marked, even within specifi c breast cancer subtypes. 

NGS = next-generation sequencing. 
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Fig 5. Mutational signatures in cancer genomes. (a) From the time of the fertilised egg through to the development of an invasive cancer, multiple mutational 

processes are likely to be operative, with each producing its own characteristic signature. At the point of diagnosis and of sequencing the cancer genome, the fi nal 

mutation spectrum is a composite of the multiple mutational processes that have been operative that might show variation in the intensity (size of arrow) and 

duration (length of arrow) of exposure to each mutational process. This image is reproduced from Helleday et al.22 (b) Examples of mutation signatures extracted 

using mathematical approaches. Each signature comprises a 96-element pattern: six main substitution classes (C>A, C>G, C>T, T>A, T>C, T>G) that also takes 

the immediate fl anking nucleotides into account (four possible bases 5′ and four possible bases 3′ to each mutated base; therefore, there are 16 possible options 

for each of the six substitution classes) giving 96 elements. Signature 1A, which is characterised by a large number of C>T mutations at a NpCpG trinucleotide 

pattern, is a ubiquitous signature identifi ed in nearly all cancer types. It is believed to be the signature of deamination of methylated cytosines. Signature 2 is 

another common signature characterised by an excess of C>T and C>G mutations at a TpCpN trinucleotide. Both Signature 1A and Signature 2 are believed to be 

endogenous in origin. Signature 7 is characterised by an excess of C>T mutations at a CpCpN and a TpCpN sequence context. This signature is associated with 

exposure to ultraviolet radiation and is typically seen in malignant melanomas and other skin cancers. This image is reproduced from Alexandrov et al.23
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At the point of a patient’s cancer diagnosis, the set of somatic 
mutations, whether base substitution, insertion and/or deletion 
of structural variation, that is revealed through sequencing of 
the cancer is the aggregate outcome of one or more biological 
perturbations or mutational processes. Each process leaves its 
own mark, its characteristic imprint or mutational signature on 
the cancer genome, defi ned by the mechanisms of DNA damage 
and DNA repair that comprise it (Fig 5).1,2 Whatever the nature 
of the mutagenic or repair mechanisms in operation, the fi nal 
catalogue of mutations is also determined by the strength and 
duration of exposure to each mutational process (Fig 5).1,2 Some 
exposures might be weak or moderate in intensity, whereas 
others might be strong in their assertion. Similarly, some 
exposures might be on-going through the entire lifetime of the 
patient, even preceding the formation of the cancer, and some 
might start late or become dominant later in tumourigenesis 
(Fig 5).21

WGS experiments result in vast data sets, characteristically 
thousands of mutations per WGS cancer (Fig 4b). The scale of 
such large data sets demands mathematical methods to distil 
the biological insights buried within.24 Intriguingly, such 
approaches have been used to unearth at least 21 different 
mutation signatures across 30 different cancer types,3 including 

signatures associated with past exposure to carcinogens, such 
as tobacco smoke in lung cancer and ultraviolet radiation in 
malignant melanoma.3 Apart from these known environmental 
exposures, endogenous enzymes that underlie mutagenesis, 
perhaps through normal physiological processes, have also 
been highlighted, including the ubiquitous deamination at 
methylated cytosines seen in nearly all human cancers2,3 and 
the activity of activation-induced cytidine deaminase (AICDA), 
which has a role in generating somatic hypermutation at 
immunoglobulin loci,3 in cancers of immune cells. However, 
many novel signatures have additionally been uncovered3 
and the race is on to understand what causes these mutation 
signatures in cancer. Thus, the second fascinating insight 
permitted by modern sequencing approaches results from the 
ability to visualise and quantify mutation signatures from 
the totality of large mutation data sets obtained from cancer 
genomes. 

Third, the digital nature of NGS readouts lends itself to 
mathematical modelling of other interesting and biologically 
pertinent features to the clinician, such as estimation of 
subpopulations of cells within a cancer.21,25 For example, 
coverage of 40-fold would mean that sequencing information 
from 40 DNA molecules is available at a particular genomic 

Fig 6. Utilising the digital nature of NGS data to discern subclonal populations in a cancer. (a) Blue and purple reads joined by a dotted line represent 

forward and reverse reads, respectively of a 500 bp fragment. A higher resolution depiction of a section of a germline sample shows a 30-fold coverage of 

reads in the region of interest. The red marks represent a variant allele that is different to the reference genome. This heterozygous SNP in the diploid germline 

genome is seen in approximately 50% of reads or has a variant allele fraction of 0.5. This higher resolution schematic of a tumour sample also has 30-fold 

coverage but has 1/3 of reads originating from contaminating normal cells. In this region, which is diploid in the tumour, the somatic variant is a  heterozygous 

mutation and is present at a lower variant allele fraction (when compared with the germline genome) of 0.33. However, if the variant allele fraction of a true 

variant is lower than expected for the level of ploidy and normal contamination, when occurring in clusters, this might be taken as evidence of a somatic 

mutation in a subclonal population (intratumoural heterogeneity). By contrast, a polyploid region where a somatic variant is present on only one of multiple 

alleles will be present at a much lower variant allele fraction. (b) This image is reproduced from Nik-Zainal et al 21. This phylogenetic tree of a primary cancer 

was constructed by inferring the presence subclonal populations of base substitution mutations as well as subclonal copy number aberrations. Integration 

of these data sets enabled construction of such trees. To a fi nite level of resolution, it is possible to work out which mutations happen early or late during the 

evolution of this cancer. bp = base pairs; chr = chromosome; NGS = next-generation sequencing; SNP = single nucleotide polymorphism.
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coordinate. A heterozygous variant in the germline would 
be expected to be present in approximately 50% of reads 
for a diploid genome (Fig 6) and a homozygous variant 
should be present in 100% of reads. In a tumour sample, a 
fraction of reads are likely to represent DNA from normal 
cells (from lymphocytes or stromal tissue contaminating 
the tumour sample), but the remaining reads should 
represent the tumour. A heterozygous variant in a diploid 
region in the tumour genome should be present in half 
of the remaining reads (Fig 6). If groups of mutations are 
found not to abide by this rule and instead be present in 
just a subset of the expected fraction of reads, then this can 
be used to infer the presence of a subclonal population in 
the cancer. Mathematical methods have been developed 
to identify such subpopulations and phylogenetic trees of 
each primary cancer can be constructed to a fi nite level of 
resolution.21 Cancer evolution does not have to be restricted 
to a primary tumour. Currently, efforts are being made 
to sequence cancers from one person that are separated 
either geographically (multifocal tumours or metastases) 
or temporally (recurrence). This results in further 
understanding of the relatedness of two tumour foci or how 
related a metastasis might be to its primary tumour.

Signifi cantly, modern sequencing technologies offer cancer 
medicine more than just the opportunity to identify cancer 
genes, to extract and quantify mutation signatures, and to 
describe the evolutionary history of a tumour. These new 
developments, although each remarkable in its own right, 
drive home a fundamental fact: that an extraordinary degree 
of tumour heterogeneity exists between patients. This cannot 
possibly be managed effectively with a one-size-fi ts-all 
chemotherapeutic approach. Instead, would it be possible to 
look forward to a future where molecular cancer genomic 
profi ling could take the format of individualised reports 
with tailored therapeutic strategies to improve individual 
management?

What the future holds

I believe that the ability to provide an exhaustive, individualised 
genomic profi le of each person’s cancer is not far away. The 
cancer genomic report of tomorrow should not simply contain 
a record of the causative driver mutations in a patient’s cancer. 
It should be a comprehensive profi le of all mutation types, 
contain an interpretation of mutation signatures present in the 
primary tumour, and should suggest therapeutically relevant 
treatment strategies for each individual patient. 

However, there are hurdles to negotiate before we will be 
able to achieve the stratifi ed medicine cancer genomic report 
described above. First, the next generation of molecular 
genomic interpreters, whether they are molecular pathologists, 
geneticists or a new breed of cancer experts, need to be trained 
from today. The ability to read cancer genomes will need 
to reach the level of service delivery to be truly useful. This 
includes building the infrastructure to support this brand 
of clinicians: computational support, standard operating 
procedures for data handling and analysis, statistical and 
academic frameworks to operate from and legal and/or ethical 
guidelines, to name a few areas of development. Second, 
clinical trials of chemotherapeutic agents that incorporate 

improved genomic profi ling of tumours are required. This is 
not a trivial exercise and years of work are still required before 
we will be in a position to match therapies to genomic status 
more effectively in the future. To reap the rewards from the 
technological advancement of sequencing tomorrow, we have 
to take action today. ■
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