Bone and joint infection

Authors: Julia Colston⁴ and Bridget Atkins⁵

Bone and joint infections include septic arthritis, prosthetic joint infections, osteomyelitis, spinal infections (discitis, vertebral osteomyelitis and epidural abscess) and diabetic foot osteomyelitis. All of these may present through the acute medical take. This article discusses the pathogenesis of infection and highlights the importance of taking a careful history and fully examining the patient. It also emphasises the importance of early surgical intervention in many cases. Consideration of alternative diagnoses, appropriate imaging and high-quality microbiological sampling is important to allow appropriate and targeted antimicrobial therapy. This article makes some suggestions as to empiric antibiotic choice; however, therapy should be guided by local antimicrobial policies and infection specialists. Involvement of a multidisciplinary team is essential for optimal outcomes.

Introduction

Bone and joint infections cause serious morbidity and pose significant management challenges. They may cause acute sepsis with bone and joint destruction, chronic pain, discharging wounds and permanent disability. With expanding populations and increasing age, bone and joint infections, especially those involving devices, will have a growing impact on healthcare resources. For effective management, well-coordinated multidisciplinary working is important.

General considerations

Pathogens can gain access into bone and joints through the bloodstream (haematogenous route) or via direct inoculation from a contiguous focus of infection. Acute haematogenous infections are most common in children and the elderly.

The presence of foreign material such as implanted devices or dead bone significantly reduces the number of organisms required to cause infection.¹ Foreign or non-viable material also allows normal skin commensals, such as coagulase-negative Staphylococcus spp, to become significant pathogens. Micro-organisms adhere to the inert surface where they are relatively protected from the blood supply, immune processes and antibiotics. Organisms, such as Staphylococcus spp can produce extracellular polymeric substance (EPS). Micro-organisms embedded in EPS create a biofilm on the inert surfaces. By communicating with each other they are able to up and downregulate gene expression enabling regulation of growth and adaptation to the environment. Biofilm formation is an important mechanism for bacterial survival in chronic bone and joint infection.²

Key points

In suspected bone and joint infections quality microbiological sampling is important. In those with features of sepsis or acute skin and soft tissue infection (SSTI), blood cultures and, where possible, aspirates should be taken immediately followed by prompt empiric antibiotic therapy. In other cases antibiotic therapy should wait until intraoperative samples are taken. In all acute bone and joint infections, orthopaedic surgeons, infection specialists and radiologists should be involved early.

Acute septic arthritis should be managed with diagnostic aspiration followed by prompt arthroscopy or arthrotomy and washout in conjunction with antibiotics. In some cases, where surgery may not be possible, serial closed joint aspirations might be an alternative option.

Acute haematogenous osteomyelitis needs prompt surgical drainage if there is a purulent collection. Other cases can be managed by antibiotics alone but with repeat imaging if there is failure to settle.

Patients with possible spinal infection need blood cultures, prompt MRI and spinal surgery review. In stable patients not requiring surgical intervention, a radiological biopsy should be considered to direct antimicrobial therapy. Tuberculosis, Brucella, Nocardia and/or fungal cultures should be requested in patients with appropriate risk factors.

In diabetic foot infections it is important to recognise severe limb-threatening infections that require urgent surgical management. Signs of this are systemic sepsis, poor glycaemic control, gas in soft tissues, abscess and infection from an ulcer tracking deeply through the foot to another site (eg plantar ulcer to dorsum of foot).

KEYWORDS: bone and joint infection, osteomyelitis, septic arthritis, prosthetic joint infection, biofilm, diabetic foot infection, discitis, vertebral osteomyelitis

© Royal College of Physicians 2018. All rights reserved.
Chronically established bone and joint infection can be persistent, evolve or relapse, even in the face of prolonged antimicrobial therapy. Biofilm has important implications for diagnostics, as well as surgical and antibiotic management.

The ‘hot’ joint
An inflamed ‘hot’ joint has a wide differential including inflammatory causes (septic arthritis, reactive, rheumatoid arthritis, spondyloarthopathies, SLE, gout or pseudo-gout) and non-inflammatory causes (degenerative joint diseases, trauma, avascular necrosis and Charcot’s arthropathy). joint disease is important to exclude, as delayed or inadequate treatment can lead onto cartilage and then joint destruction.

Acute septic arthritis
Acute septic arthritis can affect any joint. It most commonly affects the knee but may also involve wrists, ankles, hips and the symphysis pubis. Polyarticular septic arthritis is more common in patients with inflammatory joint disease or overwhelming sepsis. Injecting drug use is a risk factor for septic arthritis of the sternoclavicular, sternomanubral or sacroiliac joints, often also associated with endocarditis.

The presentation can be similar to other inflammatory causes, such as crystal arthropathy, with an acutely painful, swollen, warm, red joint and a reduced range of movement. Features suggesting septic arthritis include fever and/or chills and absence of prior history or joint and a reduced range of movement. Risk factors for septic arthritis include extremes of age, bacteraemia, inflammatory causes (septic arthritis, reactive, rheumatoid arthritis, spondyloarthropathies, SLE, gout or pseudo-gout) and non-inflammatory causes (degenerative joint diseases, trauma, avascular necrosis and Charcot’s arthropathy). Septic arthritis is important to exclude, as delayed or inadequate treatment can lead onto cartilage and then joint destruction.

Table 1. Suggested empiric antibiotics for native joint septic arthritis in adults (but consult local guidelines). Modify, with microbiological advice, when culture results are available

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Possible organisms</th>
<th>No known drug allergies</th>
<th>Penicillin allergy (non-severe eg rash)</th>
<th>Penicillin allergy (severe eg anaphylaxis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No specific risk factors</td>
<td>Staphylococcus spp, beta-haemolytic streptococci</td>
<td>IV fluoroquinolone</td>
<td>IV anti-staphylococcal cephalosporin (eg cefuroxime)</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>Frail, recurrent UTIs, end-stage renal failure, recent abdominal surgery?</td>
<td>Aerobic Gram-negative rods</td>
<td>IV co-amoxiclav</td>
<td>IV 3rd generation cephalosporin (eg ceftriaxone)</td>
<td>Clindamycin plus ciprofloxacin</td>
</tr>
<tr>
<td>MRSA risk</td>
<td>Metillin-resistant S aureus</td>
<td>Add IV glycopeptide</td>
<td>Add IV glycopeptide</td>
<td>Add IV glycopeptide</td>
</tr>
<tr>
<td>Suspected gonococcal septic arthritis</td>
<td>Neisseria gonorrhoeae</td>
<td>IV 3rd generation cephalosporin (eg ceftriaxone)</td>
<td>IV 3rd generation cephalosporin (eg ceftriaxone)</td>
<td>Clindamycin plus ciprofloxacin (stop clindamycin if proven Neisseria infection)</td>
</tr>
<tr>
<td>Intraavenous drug usage</td>
<td>S aureus. Less likely Pseudomonas aeruginosa, Fungal</td>
<td>IV fluoroquinolone</td>
<td>IV anti-staphylococcal cephalosporin (eg cefuroxime)</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>Known colonised with multidrug resistant organism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table adapted from 3,4

1Glycopeptides include vancomycin and teicoplanin. These should be used at high doses in bone and joint infection ie vancomycin at 10–12 mg/kg and teicoplanin at 10 mg/kg. Modifications to dosing will need to be made in the setting of low body weight and/or impaired renal function.

2Consult local infectious diseases / micro or geriatrics ward physicians ESBL = extended-spectrum beta-lactamases; CPE = carbapenemase producing enterobacteriaceae; IV = intraavenous; MRSA = Methillin resistant Staphylococcus aureus

© Royal College of Physicians 2018. All rights reserved.
Infections involving prosthetic joints (PJI) should always be referred back to orthopaedics, who should also involve infection specialists. Acute PJI occurs either postoperatively (up to 3 months after the initial arthroplasty) or through haematogenous spread after a period in which the prosthesis has been sound. For acute PJIs, blood cultures, plain X-ray, ultrasound and aspiration of the joint are the initial diagnostic modalities. The prosthesis at this stage is usually sound (not loose) and the most appropriate management is a DAIR procedure (a radical open Debridement with exchange of modular components but Retention of the Implant followed by Antibiotics). This needs to be done by an orthopaedic surgeon experienced in managing PJIs. Joint aspiration / arthroscopic washout may be required as an interim measure to drain pus if the relevant expertise is not immediately available. More chronic infections (usually presenting as increasing pain, loose prosthesis or a discharging sinus) may be managed by revision of the prosthesis in one or two stages or excision arthroplasty. When the prosthesis is sound, a DAIR may be considered. Expert management of the soft tissues and dead space is important and may require plastic surgery input eg a muscle flap. When surgery is performed for chronically infected prosthetic joints, this should be done off antibiotics and multiple samples taken using separate instruments for separate sites, for microbiology and histology. Postoperative antibiotics need to be managed by infection specialists and may be prolonged.

Osteomyelitis

In children the most common site for acute haematogenous osteomyelitis is the growing end of long bones. In adults, it is the spine. The most common organism is S aureus but other pathogens such as beta-haemolytic Streptococcus spp, Haemophilus influenzae, Kingella kingae or Mycobacterium tuberculosis are possible. In patients with sickle cell disease, osteomyelitis is commonly due to Salmonella spp. Osteomyelitis in children may relapse decades later in adulthood. Osteomyelitis may also occur in relation to infected fracture fixation devices. Infection may then contribute to delayed or non-union of the fracture. Figure 1 demonstrates the pathogenesis of osteomyelitis.

Acute osteomyelitis usually presents with fever and pain at the site of infection. Other skeletal sites should be examined as multifocal osteomyelitis can occur. Blood cultures and plain films should be performed. The purpose of plain films is to look for other causes of pain (eg fracture) and evidence of periosteal reaction or lucency. The imaging modality of choice for osteomyelitis, however, is MRI, which may show bone oedema, abscess formation, and periosteal reaction. If infection is chronic there may also be evidence of a sinus, cloaca, periostitis, sequestrum and/or involucrum (Fig 2). Occasionally,
M tuberculosis to postsurgical. Haematogenous infections are most commonly due to Staphylococcus aureus. Streptococcus spp, aerobic Gram-negative bacilli and Mycobacterium tuberculosis should also be considered as should Brucella spp in endemic areas and fungi in immunocompromised patients. All patients with known fever and weight loss and/or bacteremia and/or endocarditis should have prompt spinal imaging if they have new or worsening back pain. Imaging, usually by MRI (or computed tomography if MRI is contraindicated), should look for evidence of epidural abscess, discitis, vertebral osteomyelitis and, critically, for evidence of cord / cauda equina compression or vertebral instability requiring urgent surgical intervention. Epidural collections usually require surgical drainage. Unless blood cultures have already revealed a causative organism, deep microbiological samples should be obtained. This can be with intraoperative samples if surgery is indicated, or by radiological biopsy in other cases. This should be done urgently and, where possible, antibiotics withheld until after the biopsy has been taken (antibiotic therapy should not be delayed however in septic/ unstable patients). Cases should be discussed with microbiology to ensure the relevant tests are done in the laboratory.

Native vertebral osteomyelitis should be managed with 6 weeks of appropriately targeted therapy (possibly longer in complicated cases or where organisms such as Brucella spp are identified). Duration of therapy for epidural abscesses depends upon whether it was surgical drained and clinical/radiological response.

Spinal infections (vertebral osteomyelitis, discitis, epidural abscesses)

Spinal infections are most commonly either haematogenous or postsurgical. Haematogenous infections are most commonly due to Staphylococcus aureus. Streptococcus spp, aerobic Gram-negative bacilli and Mycobacterium tuberculosis should also be considered as should Brucella spp in endemic areas and fungi in immunocompromised patients. All patients with known fever and weight loss and/or bacteremia and/or endocarditis should have prompt spinal imaging if they have new or worsening back pain. Imaging, usually by MRI (or computed tomography if MRI is contraindicated), should look for evidence of epidural abscess, discitis, vertebral osteomyelitis and, critically, for evidence of cord / cauda equina compression or vertebral instability requiring urgent surgical intervention. Epidural collections usually require surgical drainage. Unless blood cultures have already revealed a causative organism, deep microbiological samples should be obtained. This can be with intraoperative samples if surgery is indicated, or by radiological biopsy in other cases. This should be done urgently and, where possible, antibiotics withheld until after the biopsy has been taken (antibiotic therapy should not be delayed however in septic/ unstable patients). Cases should be discussed with microbiology to ensure the relevant tests are done in the laboratory.

Native vertebral osteomyelitis should be managed with 6 weeks of appropriately targeted therapy (possibly longer in complicated cases or where organisms such as Brucella spp are identified). Duration of therapy for epidural abscesses depends upon whether it was surgical drained and clinical/radiological response.

Diabetic foot osteomyelitis

Diabetic foot infections usually occur following skin ulceration in patients with neuropathy and/or vascular insufficiency. Infections can go on to cause adjacent osteomyelitis. In severe infections this can rapidly become limb and life threatening. It is essential for all patients, especially diabetics, presenting with acute medical services to have a full foot examination including

Table 2. Diabetic foot infections: pathogens and suggested empiric antimicrobial therapy (but consult local guidelines)

<table>
<thead>
<tr>
<th>Severity*</th>
<th>Usual pathogens</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>Metillin-sensitive Staphylococcus aureus (MSSA); Streptococcus spp</td>
<td>No known drug allergy</td>
</tr>
<tr>
<td>Mild (usually treated with oral agents)</td>
<td>Metillin-resistant S aureus (MRSA)</td>
<td>Flucloxacinil or co-amoxiclav</td>
</tr>
<tr>
<td>Moderate (may be treated with oral or initial parenteral agents)</td>
<td>MSSA; Streptococcus spp; Enterobacteriaceae; anaerobes</td>
<td>Co-amoxiclav</td>
</tr>
<tr>
<td>Risk of Pseudomonas aeruginosa</td>
<td></td>
<td>Anti-pseudomonal beta-lactam eg piperacillin-tazobactam or ceftazidime plus metronidazole</td>
</tr>
<tr>
<td>MRSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe (usually treated with parenteral agents)</td>
<td>MRSA; Enterobacteriaceae; Pseudomonas aeruginosa; anaerobes</td>
<td>Antipseudomonal beta-lactam eg ceftazidime and metronidazole</td>
</tr>
</tbody>
</table>

*Severity based on the Infectious Diseases Society of America severity score as follows:

Uninfected: No symptoms or signs of infection present (symptoms/signs defined as at least two of local swelling or induration, erythema, local tenderness or pain, local warmth, purulent discharge)

Mild: Local infection involving only the skin and subcutaneous tissue. If erythema, must be >0.5–<2 cm around the ulcer. Exclude other causes of inflammatory response of the skin

Moderate: Local infection (as above) with erythema ≥ 2 cm, or involving structures deeper than skin and subcutaneous tissue, and no systemic inflammatory response signs

Severe: Local infection with signs of systemic inflammatory response with two or more of temperature ≥38°C or <36°C, heart rate >90 beats/min, respiratory rate >20 breaths/min or PaCO2 <32 mmHg, white blood cell count >12,000 or <4000 cells/μL, or ≥10% immature (band) forms

© Royal College of Physicians 2018. All rights reserved.
the removal of dressings. An audit (England and Wales) in 2015 showed that two-thirds of diabetic inpatients did not have a specific diabetic foot risk examination while an inpatient.17

Urgent surgical intervention may be required in those patients with abscesses, necrotising soft tissue infections and/or uncontrolled sepsis. Clinical evidence of pus tracking from one area (eg ulcer) to another may be indicative of deep spreading infection. Less urgent surgery may be required for those with substantial non-viable tissue or extensive bone or joint involvement. An early vascular assessment and involvement of a vascular surgeon to consider revascularisation in appropriate cases, especially those with critical ischaemia, is essential.

Table 2 gives a guide to empiric antibiotic management based upon the severity of disease. Tissue sampling can be helpful for antimicrobial management. Superficial swabs often represent colonisation only, whereas deep tissue curettings/bone sampling can allow for appropriately targeted treatment.

Conclusions

Bone and joint infections can present through the acute medical take. It is important to take a careful history and remove any dressings during initial assessment and to recognise when urgent surgical intervention is required. Microbiological sampling should be done in all cases, to allow for targeted antimicrobial management. Comorbidities must be adequately managed. Involvement of the multidisciplinary team is essential.

References

Address for correspondence: Dr Bridget Atkins, Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Windmill Road, Headington, Oxford OX3 7LD, UK.
Email: Bridget Atkinso@ouh.nhs.uk