Lessons of the month: Nitrous oxide-induced functional vitamin B₁₂ deficiency causing subacute combined degeneration of the spinal cord

Authors: Adam Seed^A and Meesha Jogia^B

We discuss the case of a 22-year-old man who presented with paraesthesia, reduced sensation and weakness in his limbs. Examination was in keeping with a myeloneuropathy. Initial investigations including vitamin B₁₂ were unremarkable but magnetic resonance imaging of the spinal cord showed subacute combined degeneration. The patient reported heavy recreational use of nitrous oxide, which can cause functional deficiency of vitamin B₁₂ with neurological sequelae. A diagnosis of functional vitamin B₁₂ deficiency was made and confirmed by an elevated methylmalonic acid level. The patient received intramuscular hydroxocobalamin and made a good recovery following rehabilitation. Nitrous oxide use is prevalent and can have significant health effects. Many adverse effects are mediated through inactivation of vitamin B₁₂ and can be detected by elevated homocysteine and methylmalonic acid levels. Early identification and prompt treatment are important to support neurological recovery.

KEYWORDS: Nitrous oxide, functional vitamin B₁₂ deficiency, subacute combined degeneration, myelopathy, myeloneuropathy

DOI: 10.7861/clinmed.2020-0072

Case presentation

A 22-year-old man was referred by his general practitioner to the acute medical take due to a subacute history of neurological symptoms. He reported a 3-week history of paraesthesia affecting the extremities of his left upper and lower limbs. He subsequently developed weakness and reduced sensation in his left lower limb.

The patient had no past medical history of note. He was a non-smoker and rarely drank alcohol but reported substance misuse, namely nitrous oxide on a weekly basis, cocaine on alternate weeks, ketamine and various unidentified pills (presumed amphetamine derivatives). He described a 3-year history of nitrous oxide use, which increased over the preceding 3 months, from approximately 120 to 288 canisters weekly.

On initial neurological examination by the admitting medical team, power was reduced in the left foot on both dorsiflexion and plantar flexion (4/5 as per Medical Research Council (MRC) grading). Sensation was intact.

Initial blood results showed normal haemoglobin, white cell count and mean corpuscular volume. Basic biochemistry, including urea and electrolytes, adjusted calcium, magnesium and phosphate, was unremarkable. Vitamin B₁₂ levels were 222 ng/L (normal range 180–910), with folate and thyroid-stimulating hormone also within the normal range.

The initial differential diagnosis was of a possible side effect of heavy nitrous oxide use but it was determined that a demyelinating process such as multiple sclerosis needed to be excluded. The acute medical team requested magnetic resonance imaging (MRI) of the brain and referred to neurology for inpatient review.

MRI of the brain was unremarkable. On day 3 of admission, the patient was transferred to a general medical ward, where the differential diagnosis was broadened to include transverse myelitis and mononeuritis multiplex. There was suspicion of functional vitamin B₁₂ deficiency caused by nitrous oxide use, so methylmalonic acid (MMA) and homocysteine levels were checked. HIV and syphilis serology were also tested; these came back negative.

Repeat neurological examination identified a slight spastic catch on supination of the right upper limb but otherwise normal tone. Limb power was normal (MRC 5/5) other than bilateral reduced power of ankle dorsiflexion, left (3/5) more than right (4/5). Reflexes were brisk in both upper limbs with Hoffmann’s jerks. Lower limb reflexes were reduced and only manifested with reinforcement. Vibroception and proprioception were absent distal to the ankle bilaterally. Romberg’s sign was positive and gait was unsteady. The findings were in keeping with myeloneuropathy with possible subacute combined degeneration of the cord (SACD); the likeliest aetiology was functional vitamin B₁₂ deficiency caused by nitrous oxide use.

MRI of the whole spine (Fig 1) showed increased signal in the cervical dorsal columns, consistent with SACD. The patient was treated with intramuscular hydroxocobalamin injections to raise levels of active vitamin B₁₂.
Nitrous oxide (N₂O), colloquially called ‘laughing gas’, is an inhalant used medically for short-lasting procedural analgesia.¹ It acts as an N-methyl-D-aspartate antagonist with additional opioid receptor activity, leading to analgesic and euphoric effects; it has therefore been used recreationally for over 200 years.¹–³ Aluminium N₂O canisters, the commonest recreational source, are colloquially known as ‘whippits’ from their intended use as a propellant in whipped cream.²

The sale or purchase of nitrous oxide for recreational use is illegal in the UK under the Psychoactive Substances Act 2016. The UK Home Office estimates prevalence of nitrous oxide use at 2.3% in England and Wales, with the highest prevalence (8.8%) in the 16–24 years age group.⁴ It has been estimated that 38.6% of people in the UK will use nitrous oxide in their lifetime.⁵ In the decade 2008–2017, nitrous oxide played a role in 28 deaths in England and Wales, though these were likely asphyxia-related.²,⁶ Nitrous oxide neurotoxicity is mediated through nitrous oxide binding to and inactivating cobalamin. This reduces cobalamin’s effect as a cofactor in the conversion of homocysteine to methionine.³ The methionine metabolite S-adenosylmethionine is required for myelin synthesis and maintenance, so depletion causes neuropathy and myelopathy.¹ In a separate metabolic pathway, B₁₂ is a cofactor in converting MMA to succinyl CoA; deficiency of active cobalamin leads to MMA accumulation and subsequent demyelination.²,⁷

Most patients with nitrous oxide-induced neurological symptoms have low measured vitamin B₁₂ but 29.3% will have normal levels.¹ High levels of MMA and homocysteine can indicate functional vitamin B₁₂ deficiency even when B₁₂ levels are normal.¹,⁷ Treatment consists of abstinence from nitrous oxide and replacement of vitamin B₁₂.²,⁷ Methionine supplementation has evidence of efficacy but use is hampered by limited supply.⁸

Despite treatment, neurological symptoms can take months to resolve and many patients report residual symptoms.²,⁵,⁷,⁸

Summary
Nitrous oxide is commonly used by UK adults and can cause neurological complications. Patients may develop clinical features of vitamin B₁₂ deficiency with normal serum levels; elevated homocysteine and MMA levels can indicate functional vitamin B₁₂ deficiency.●

Acknowledgements
The authors wish to acknowledge the Warrington and Halton Hospitals Quality Academy Knowledge and Evidence Service for their assistance with the literature review.

References

Address for correspondence: Dr Adam Seed, Southport and Formby District General Hospital, Town Lane, Kew, Southport, Merseyside PR8 6PN, UK.
Email: adam.seed@nhs.net