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  PROCESS AND SYSTEMS  Does telemedicine reduce the carbon 
footprint of healthcare? A systematic review
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In the rapidly progressing field of telemedicine, there is 
a multitude of evidence assessing the effectiveness and 
financial costs of telemedicine projects; however, there is 
very little assessing the environmental impact despite the 
increasing threat of the climate emergency. This report 
provides a systematic review of the evidence on the carbon 
footprint of telemedicine. The identified papers unanimously 
report that telemedicine does reduce the carbon footprint 
of healthcare, primarily by reduction in transport-associated 
emissions. The carbon footprint savings range between 
0.70–372 kg CO2e per consultation. However, these values are 
highly context specific. The carbon emissions produced from 
the use of the telemedicine systems themselves were found 
to be very low in comparison to emissions saved from travel 
reductions. This could have wide implications in reducing 
the carbon footprint of healthcare services globally. In order 
for telemedicine services to be successfully implemented, 
further research is necessary to determine context-specific 
considerations and potential rebound effects.
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Introduction

Telemedicine is the use of information and communications 
technologies (ICT) within the realm of healthcare. The scope of 
services that fall within the remit of telemedicine is ambiguous. 
This paper uses the World Health Organization definition of 
telemedicine, defined as the use of ICT ‘for the exchange of valid 
information for diagnosis, treatment and prevention of disease 
and injuries, research and evaluation, and for the continuing 
education of health care providers’.1

The applications of telemedicine can be categorised according 
to type of interaction (clinician-to-patient or clinician-to-clinician) 
or timing (asynchronous or synchronous).1 Asynchronous involves 
sending pre-recorded information between individuals, whereas 
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synchronous is real-time data transmission. The data may be 
transmitted via a variety of media, such as audio, video or text. 
This paper will focus on all forms of telemedicine involving direct 
patient care where the carbon footprint of the telemedicine 
project is compared to a face-to-face (FTF) scenario.

Telemedicine is a recent development within healthcare. 
In this decade, there has been an explosion in telemedicine 
research, focusing on specific medical specialties. The reported 
advantages include lower financial costs, high patient 
satisfaction, better rural access, decreased waiting times and 
fewer missed appointment.2–7 There is less available evidence 
from primary care; however, there are positive findings in 
primary care chronic disease management.8–10 The main 
disadvantages are erosion of the clinician–patient relationship 
and concerns around quality of care. In terms of clinician–
patient relationship, this concern arises particularly from 
elderly patients and healthcare providers themselves; however, 
acceptance has been shown to be increasing.6,11,12 There are 
mixed reports on the quality of care provided by telemedicine; 
some sources report improved or maintained standards of care, 
whereas others found a reduction in quality of care compared to 
FTF scenarios.9,13–19

In spite of the extensive research into the effectiveness, 
cost and perceptions of telemedicine, there have been few 
contributions assessing the environmental impact; despite 
many previous studies stating a reduction in travel time and 
the increasing awareness of environmental concerns within 
society.7,20–23

In a world where climate change has been named as one of the 
biggest threats to human health, the healthcare sector continues 
to significantly contribute to greenhouse gas (GHG) emissions.24 
Health Care Without Harm estimated the global carbon footprint 
of healthcare to be 2 gigatons of carbon dioxide equivalents 
(CO2e) in 2014, equating to 4.4% of global net emissions; 
transport contributed 7% of this total.25

From a UK perspective, the estimated carbon footprint of the 
NHS in England was 25.0 megatons of CO2e in 2019.26 The NHS 
launched the ‘For a Greener NHS’ programme in January 2020, 
and has produced a Net Zero Report outlining the interventions 
needed to reach its target of being net carbon zero by 2050.26 
Travel accounts for 10% of NHS’ GHG emissions and, in 2008, an 
estimated 5% of all road travel was attributable to the NHS.26,27 
Telemedicine provides an exciting prospect for potential reduction in 
the NHS’ contribution to climate change. A 2018 NHS Midlands and 
Lancashire commissioned report estimated that the West Midlands 
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could reduce emissions by 533,535 kg CO2e annually by shifting 15% 
of all hospital follow-up consultations to telemedicine.28

Methods

A review of the published works relating to the carbon footprint 
of telemedicine was carried out using the databases MEDLINE, 
Embase and Scopus. The search strategy is documented in 
supplementary material S1, Table S1.

The searches were carried out by two researchers between  
10 May 2020 and 14 May 2020, and there were no limitations in 
terms of publication date. The publications were then screened 
for duplications. The inclusion criterium was for the publication to 
be a primary research study considering the carbon footprint of 
telemedicine programmes. The exclusion criteria were:

>	 publications not involving direct patient care
>	 veterinary or dentistry publications
>	 non-English language publications
>	 publications modelling theoretical carbon footprint savings 

from future adoption of telemedicine
>	 publications without primary data.

There were no limitations on research methods. After having 
been screened for suitability, the publications were divided into 
three categories for analysis: telephone synchronous, video 
synchronous and asynchronous. The telephone consultations were 
not divided based on VoIP (Voice over Internet Protocol) versus 
mobile telephone or landline calls, since this information was not 
available in all of the publications.

In order to compare the studies, the total CO2e reductions 
were divided by the number of consultations to calculate 
emissions reduction per consultation. Travel distance saved was 
compared with the carbon footprint reduction per consultation, 
and linear regressions were used to quantify the strength of this 
correlation.

Results

Study selection

The PRISMA statement (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) was used to screen the literature, 
illustrated in Fig 1.29

This literature search produced 65 results, 11 of which were found 
to be duplicates. After assessment against exclusion and inclusion 
criteria, 14 of these publications were found to be relevant to the 
assigned question.

Study comparison

Fig 2 illustrates the carbon footprint saved versus the average 
travel distance saved (Table 1). This positive correlation highlights 
that the carbon footprint saving is primarily due to travel 
reduction. The blue trendline considers only the studies which 
measured road travel, and there is strong positive correlation 
(r2=0.9973; p=3.78 × 10-14). The results of this linear regression 
are shown in supplementary material S1, Table S2. The two studies 
examining air travel do not appear to fit this pattern (shown in 
yellow). The strong congruence shown across road travel studies 
gives confidence in the reliability and thoroughness of the 
literature.

Telephone synchronous

There were four examples found of telephone synchronous 
papers. Two studies from the UK assessed a virtual urology clinic 
in London.30,31 Both studies measured carbon footprints by the 
distance saved from patients’ home addresses to the hospital 
in which the FTF appointment would have otherwise occurred. 
They calculated two different scenarios; assuming every patient 
either drove using a 1,800 cc petrol car or took the underground 
train. In Fig 2, the values for the car scenarios were used since 
this is the mode of transport primarily used in the other studies. 
Miah et al found an average distance saving of 18.2 km per 
patient, correlating with savings per consultation of 0.86 kg CO2e 
(underground scenario) and 3.55 kg CO2e (car scenario).30 MJ 
Connor et al assessed 1,008 patients and found an average saving 
of 15.0 km per patient, correlating to a carbon footprint reduction 
of 0.70 kg CO2e (underground scenario) and 2.93 kg CO2e 
(car scenario).31 It is unknown whether the individual patients 
overlapped between these two studies due to their overlapping 
time frames. This is a relatively low CO2e saving due to short travel 
distances in a densely populated region.

A Connor et al assessed telephone follow-up appointments post-
renal transplant surgery.32 They examined 30 patients attending 

Fig 2. Carbon footprint against travel distance savings of telemedicine 
interventions.
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Fig 1. PRISMA diagram showing literature search results.
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two consecutive telephone appointments. Calculating travel 
distances from home addresses, also taking into account mode of 
transport and vehicle specifications; the mean saving was 39.3 km, 
equating to 8.05 kg CO2e per consultation.

Robinson et al assessed the environmental savings from pre-
surgical telephone consultations in Texas.33 There was only one 
tertiary centre providing this surgery, so large distances were 
travelled for surgical eligibility. Using ZIP codes, this study found 
that the average mileage saved was 1,061 km. They made 
the assumption of an average car, so not accounting for other 
methods of transport and vehicle specifications. The reduction in 
carbon footprint was calculated as 271 kg CO2e per consultation. 
This prospective study found there to be a correlation between 
increased travel distance and increased likelihood of choosing 
telemedicine over FTF appointments.

One limitation of these telephone synchronous studies is that they 
do not assess the carbon footprint of the running of the telephone 
service, which would have to be subtracted from the CO2e estimation.

Video synchronous

There were nine examples of video synchronous telemedicine. Since 
videoconferencing equipment is more specialised and therefore less 
common within people's homes, many of the video consultations 
occurred at an intermediate telemedicine site. Three of these 
sources additionally accounted for the carbon footprint of the 
telemedicine equipment of both of the clinician and patient devices.

Holmner et al assessed videoconferencing for telerehabilitation 
in Sweden. As well as looking at distances from the patients’ 
homes to the hospital, a comprehensive life cycle assessment 
(LCA) was carried out to estimate the carbon footprint of the 

videoconferencing equipment.34 This was a ‘cradle to grave’ 
assessment based on the model in Ong et al, which included 
energy consumption of equipment during the use-phase as 
well as emissions generated during design, manufacturing and 
disposal of equipment.35 LCAs of car travel were also included, 
based on average characteristics of European cars. From the 238 
appointments at the hand and plastics surgery clinic, a total travel 
distance of 82,310 km was saved, giving a range of 87.4–176 kg 
CO2e per consultation saved using telemedicine. This range was 
due to the use of two different LCAs of vehicles. In Fig 2, 87.4 kg 
CO2e was used since this value arises from the most recent LCA by 
Leduc et al, reflecting recent increases in energy efficiency of cars.36 
An important conclusion of this paper is that the carbon footprint 
of the telemedicine equipment is small compared to the carbon 
footprint of travel, at 1.86–8.43 kg CO2e per hour consultation.

Two additional studies consider the energy usage of the 
videoconferencing equipment, but do not include LCAs of 
emissions produced during production and disposal of equipment. 
Masino et al looked at telemedicine appointments in Ontario using 
estimated distances from the patient address to the telemedicine 
site, as compared with the hospital.37 There was a mean saving 
of 901 km per consultation. The environmental cost of the 
telemedicine equipment was found to be very low, at 0.04 kg CO2e 
per 1-hour consultation. The total GHG saving was 220 kg CO2e 
per consultation. Whetten et al produced a similar result of 0.052 
kg CO2e per 1-hour consultation.38 This study looked at neurology 
video consultations from 12 rural hospital sites to a large hospital 
in New Mexico, which avoided unnecessary helicopter air 
ambulance flights. CH4 (methane), CO2 and N2O (nitrous oxide) 
emissions were used to calculate CO2e. This saved 381 km per 
consultation, equating to 306 kg CO2e.

Table 1. Distance and carbon savings of telemedicine studies

Study Study region Average distance saving 
(km/consultation)

Carbon footprint 
(kg CO2e/consultation)

Beswick et al (2014) California, USA 1,387 372

Connor A et al (2011) Warwickshire, UK 39.3 8.05

Connor MJ et al (2019) London, UK 15.0 2.93 (car)

0.70 (underground train)

Dorrian et al (2009) Scotland, UK 698 123 (air)

Dullet et al (2017) California, USA 447 102

Holmner et al (2014) Västerbotten, Sweden 346 87.4 (Leduc LCA model)

176 (Lenzen LCA model)

Masino et al (2010) Ontario, Canada 901 220

Miah et al (2019) London, UK 18.2 3.55 (car)

0.86 (underground train)

Oliveira et al (2013) Alentejo, Portugal 111 22.0

Paquette et al (2019) Michigan, USA 50.2 11.2

Robinson et al (2017) Texas, USA 1,061 271

Vidal-Alaball et al (2019) Catalonia, Spain 21.3 3.25

Whetten et al (2019) New Mexico, USA 381 306 (air)

Wootton et al (2010) Scotland, UK 126 26.9

LCA = life cycle assessment.
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It is important to consider the differences between media 
sources within telemedicine. Videoconferencing has a higher 
energy consumption compared with telephone consultations, 
so it can be assumed that the carbon footprint would be higher. 
An advantage of telephone appointments is that the majority 
of people worldwide have access to a telephone, whereas 
videoconferencing may require travel to a telemedicine site.46 
However, comparisons between the two media sources have found 
videoconferencing to be safer, with more favourable outcomes 
and better clinician decision making.47–50

The carbon footprint savings were highly dependent on the 
inter-related factors of medical specialty, geography and time. 
The higher the level of specialisation seemed to correspond with 
a greater reduction in travel, since specialised centres serviced a 
wider geographic region. For example, in Beswick et al, there was 
only one tertiary centre providing this service for veterans in south-
west USA, therefore travel reductions were large.44 This implies 
that the extent of carbon footprint reduction will be dependent 
on the population density of the region, as well as on transport 
infrastructure.

There are limitations arising from variance in methodology 
within these research papers. There is variation in how travel 
and carbon footprint has been modelled. In terms of modes of 
transport, the majority of studies assumed the mode of transport 
to be a car, with assumed average characteristics. Considering 
the air travel scenarios, emissions from flights are highly 
dependent on the size and type of aircraft. The primary source 
of GHGs from travel is carbon dioxide, which was consistently 
accounted for in every study. However, some studies provided 
a more comprehensive assessment of GHG, also assessing CH4 
and N2O.37,38 Another factor to consider is double consulting; a 
situation where a teleconsultation is inadequate, necessitating the 
need for a further FTF consultation. This scenario increases the net 
carbon emissions. Future studies should aim to incorporate carbon 
emissions from subsequent FTF consultations in order to more 
accurately represent net carbon savings.

There is a limitation in that the majority of studies did not 
include the carbon footprint of the telemedicine service; but 
when assessed, this was found to be low in comparison to travel 
carbon footprint. The most comprehensive LCA, carried out by 
Holmner et al, estimated that the studied telerehabilitation service 
became carbon cost-effective where the patient travel distance 
was over 7.2 km.34 This again highlights the variance in net savings 
depending on travel distance; however, all of the studies analysed 
in this paper had a travel distance of over 7.2 km. Fig 2 highlights 
the low significance of the telemedicine carbon footprint, since 
there was congruence between road travel studies regardless of 
whether they included this aspect or not. Another limitation is that 
the studies assumed that every telemedicine appointment would 
otherwise have taken place at the specified hospital. This may not 
have been the case; patients may have otherwise been referred to 
less specialised local hospitals or may have chosen not to attend 
an appointment due to large travel distances and costs. Therefore, 
the reductions in travel may be an overestimate.

This review assessed only the direct carbon footprint of 
telemedicine; there may be rebound effects to consider. It 
has not been determined what the time and money saved 
by individuals and healthcare organisations would have been 
used for instead. If these alternate activities were high carbon 
generating, then there is a risk that much of the savings could 
be undermined. However, since there is likely to be an increasing 

Dullet et al investigated the carbon footprint of University of 
California Davis Health System's (UCDHS) outpatient telemedicine 
service.39 There were 157 telemedicine sites across California 
from which these services could be accessed. Average one-way 
distance to telemedicine sites was 27.4 km compared with a 
potential 251 km to the UCDHS. A total of 1,969,000 kg CO2e was 
saved over 19,246 consultations, corresponding to 102 kg CO2 per 
consultation. A similar large-scale study in Portugal by Oliveira 
et al assessed 20,824 video consultations.40 Estimates of travel 
distances were made using survey data on distance travelled and 
mode of transport. It concluded that without video consultations, 
patients would have travelled an extra 2,313,819 km, increasing 
the carbon footprint by 455,000 kg CO2e (22 kg CO2e per 
consultation). This gave a retrospectively calculated reduction of 
95% in GHG emissions.

Paquette et al assessed video consultations from one vascular 
surgeon in Michigan.41 Using average vehicle emissions, the 
average distance saved travelling to the telemedicine site 
compared with the hypothetical distance to the hospital was 
calculated to be 50.2 km per consultation, equating to 11.2 kg CO2e.

Wootton et al assessed a videoconferencing tool used in nurse-
led minor injuries units in Grampian, Scotland.42 This allowed 
clinicians to ask for advice from emergency doctors in Aberdeen, 
preventing unnecessary transfer in 90–95% of cases. This was 
estimated to avoid 260,000 km of travel, or 26.9 kg CO2e per 
consultation.

Two studies investigated the use of videoconferencing for head 
and neck cancer assessment.35,36 In Dorrian et al, doctors on 
the Shetland Islands performed laryngoscopy which was viewed 
live by a consultant in Aberdeen.43 The carbon footprint savings 
were calculated from both the road and air segments of the 
journey (a 698 km round-trip) estimated to reduce emissions by 
123 kg CO2e per consultation. In Beswick et al, 21 patients were 
assessed for head and neck cancer over 39 videoconferences.44 
This occurred with healthcare professionals at the patient's 
home, providing real time nasopharyngoscopy, which was 
viewed live by a surgeon at a hospital in California. The round-
trip distance saved was 1,387 km road travel per consultation, 
equating to 372 kg CO2e. One limitation in both studies is that 
the travel distances of the healthcare professionals were not 
accounted for.

Non-synchronous

The literature search produced only one example of non-
synchronous telemedicine. Vidal-Alaball et al looked at primary 
care referrals to telemedicine services in Catalan.45 Rather than 
using exact patient addresses, distances were calculated from the 
primary care centres to secondary care centres and assumed every 
patient travelled by car. The mean distance saved was 21.3 km, 
equating to 3.25 kg CO2e per patient.

Discussion

The studies in this review consistently report that telemedicine 
reduces the carbon footprint of healthcare as compared with 
FTF scenarios. This reported benefit was primarily through 
travel-associated savings which greatly outweighed the carbon 
footprint of the telemedicine equipment. The savings ranged 
from 0.70 to 372 kg CO2e per consultation but were highly 
context specific.



© Royal College of Physicians 2021. All rights reserved.� e89

The carbon footprint of telemedicine

missing out a component of the carbon footprint. Future studies 
should aim to include these LCAs in order to produce more 
accurate estimates of carbon footprint which can be used to 
assess whether these programmes are carbon cost-effective. As 
for any new intervention in healthcare, multiple factors need to 
be considered including clinical and cost effectiveness, safety 
and equity, all in relation to a local context. It is into this mix that 
environmental considerations such as carbon footprint need to be 
understood. ■
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