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Development of minimal resource 
pre-screening tools for chronic kidney disease in people 
with type 2 diabetes
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Regular chronic kidney disease (CKD) screening can facilitate 
earlier diagnosis of CKD and preventative action to reduce 
the risk of CKD progression. People with type 2 diabetes are 
at a higher risk of developing CKD; hence, it is recommended 
that they undergo annual screening. However, resources may 
be limited, particularly in lower-to-middle income countries, 
and those at the highest risk of having an abnormal CKD 
screening result should be prioritised for screening. We have 
developed models to determine which patients are at a high 
risk of renal impairment. We have shown that, for people 
with type 2 diabetes and no previous diagnosis of CKD 
stage 3–5, it is possible to use age, gender, body mass index, 
duration of type 2 diabetes and blood pressure information 
to detect those at a higher risk of a reduced glomerular 
filtration rate. When blood measurements are available, 
triglyceride and cholesterol measurements can be used to 
improve the estimate of the risk. Even though risk factors 
were associated with an increased urine albumin:creatinine 
ratio, we found no clinical benefit of using the model over a 
screen-all approach.
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Introduction

Chronic kidney disease (CKD) is a recognised global health 
problem, with a prevalence of more than 9%, associated with 
cardiovascular complications and mortality.1 Diabetes is a 
well-known risk factor for CKD and acts as a catalyst for CKD 
progression and it is the leading cause of kidney failure.1–5 Early 
detection of CKD is, therefore, particularly important in people 
with diabetes to initiate preventative interventions that slow 
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progression.6 However, with the expected increase of people 
with diabetes, this imposes a monumental demand on screening 
practices.7

CKD screening often involves the measurement of estimated 
glomerular filtration rate (eGFR) and urine albumin:creatinine ratio 
(uACR). The National Institute for Health and Care Excellence and 
the American Diabetes Association promote annual screening 
of CKD among patients with type 2 diabetes mellitus (T2DM).8,9 
However, in practice, not all patients complete these checks; 
the UK national diabetes audit 2019/2020 reported that only 
61.1% had a measurement of urine albumin and 94.4% had 
a measurement of serum creatinine, which has more recently 
decreased to 52.7% and 85.7%, respectively, with the onset of the 
COVID-19 pandemic.10

In addition, availability of healthcare resources vary globally. 
In lower-to-middle income countries, resources are limited and 
annual screening is not commonplace. Consequently, patients 
tend to receive reactive care rather than proactive prevention.11 
Due to the asymptomatic nature of CKD in its early stages, 
patients can go undiagnosed or are diagnosed late.12 This 
can result in overall worsening health that may be irreversible. 
Therefore, there is a need for a tool to identify those who should 
be prioritised for screening to facilitate earlier diagnosis and 
earlier treatment, when resources are limited.

Methods

Design, data source and ethics

We carried out a retrospective, observational study, utilising data 
provided by 22 UK primary care centres that agreed to share 
pseudonymised patient-level data. A data sharing agreement was 
in place with each of the practices for all people with T2DM that 
did not choose to opt-out via the national data opt-out service. 
This was approved by the Health Research Authority, and Health 
and Care Research Wales.

Primary outcomes

Our primary outcomes measured on or after 01 January 2020 
consisted of:

 > eGFR <60 mL/min/1.73m2 (via an eGFR entry or derived from a 
serum creatinine entry, described in the supplementary material S1)

 > uACR ≥30 mg/g.
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Population

Our study population consisted of patients that were 18 years old 
and above with a diagnosis of type 2 diabetes and no diagnosis of 
CKD stage 3–5, prior to the eGFR/uACR measurement.

Candidate predictors

Diabetes-related care measures and patient information were 
selected as candidate predictors: age, gender, body mass index 
(BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), 
duration of type 2 diabetes, total cholesterol, ratio of high-density 
lipid (HDL) to total cholesterol, glycated haemoglobin (HbA1c), 
triglycerides and ethnicity. Two versions of the model were 
considered: one using all the variables (termed the full model) and 
one using a subset (termed a minimal-resource model) excluding 
ethnicity and the measurements that require laboratory testing (ie 
including only age, gender, BMI, SBP, DBP and duration of type 2 
diabetes).

Given that the data available were routinely collected, we 
expected that the measurements of predictors would likely be 
taken on a different day to the outcome measurement. The 
process for selecting or interpolating a value, where appropriate, is 
described in the supplementary material S1.

Missing data

For continuous variables, predictive mean matching within 
multiple imputation chained equations was performed for 
missingness below 60% using 20 iterations. Categorical variables 
were imputed with the mode.

Statistical methods

The baseline characteristics of the patients at the time of outcome 
measurement were analysed. Continuous variables were evaluated 
using the mean and standard deviation or median and interquartile 
range for normal and non-normal distributions, respectively. Chi-
squared testing was applied to test for differences in proportions, 
where appropriate. Logistic regression was applied to the data 
where the functional forms of the variables were selected a priori 
according to clinical expertise. Sample sizes were sufficient for 
model development according to post hoc calculations.13 Internal 
bootstrap validation using 200 iterations was applied to estimate 
the optimism of the model performance metrics. We present the 
optimism-adjusted positive predictive value (PPV) and sensitivity, 
and their bootstrap 95% confidence intervals (CIs). The aim of 
the model was to improve the PPV without reducing the sensitivity 
below 80%. Therefore, a threshold was selected where the lower 
bound of the optimism-adjusted sensitivity 95% CI was above 80%.

Results

Summary statistics

A total of 13,127 patients with type 2 diabetes were identified, of 
whom, 1,402 (10.7%) had a diagnosis of CKD stage 3–5 before 
01 January 2020. After removing measurements that occurred 
before the first recording of type 2 diabetes or after a diagnosis 
of CKD stage 3–5, 9,423 patients had at least one valid uACR or 
eGFR (uACR n=6,090; eGFR n=9,297; supplementary material 
S1, Fig S1). Table 1 describes the demographic data of patients, 

Table 1. Baseline patient demographics at the time 
of estimated glomerular filtration rate and urine 
albumin:creatinine ratio measurement

eGFR, n=9,297 uACR, n=6,090

Women, n (%) 3,919 (42.2) 2,386 (39.2)

Ethnicity, n (%)

 Asian/Asian British 1,134 (12.2) 480 (7.9)

 Black/Black British 222 (2.4) 137 (2.2)

 Mixed 2,678 (29.8) 1,869 (30.7)

 White 3,728 (40.1) 2,588 (42.5)

 Other 316 (3.4) 224 (3.7)

 Missing 1,129 (12.1) 792 (13.0)

Age

 Overall, years, mean (SD) 65.5 (13.1) 66.1 (12.4)

 Under 40 years, n (%) 298 (3.2) 148 (2.4)

 40–59 years, n (%) 2,527 (27.2) 1,554 (25.5)

 60–69 years, n (%) 2,459 (26.4) 1,681 (27.6)

 70–79 years, n (%) 2,431 (26.1) 1,740 (28.6)

 80 years and over, n (%) 1,582 (17.0) 967 (15.9)

Duration of diabetes

  Overall, years, median  
(IQR)

6.6 (2.9–11.4) 6.7 (3.1–11.5)

 Less than 1 year, n (%) 1,015 (10.9) 615 (10.1)

 1–2 years, n (%) 1,344 (14.5) 870 (14.3)

 3–4 years, n (%) 1,336 (14.4) 889 (14.6)

 5–9 years, n (%) 2,865 (30.8) 1,884 (30.9)

  10 years and over,  
n (%)

2,737 (29.4) 1,832 (30.1)

Body mass index

  Overall, kg/m2, median  
(IQR)

30.0 (26.5–34.5) 30.1 (26.7–34.5)

  Underweight  
(<18.5 kg/m2), n (%)

51 (0.5) 19 (0.3)

  Healthy (18.5–25 
kg/m2), n (%)

1,373 (14.8) 860 (14.1)

  Overweight (25–30  
kg/m2), n (%)

2,965 (31.9) 2,009 (33.0)

  Obese (30–35 kg/m2),  
n (%)

3,662 (39.4) 2,483 (40.8)

  Severely obese  
(>35 kg/m2), n (%)

811 (8.7) 534 (8.8)

 Missing, n (%) 435 (4.7) 185 (3.0)

SBP

  Overall, mmHg, mean  
(SD)

133.2 (15.1) 133.7 (14.6)

  SBP >140 mmHg,  
n (%)

2,067 (22.2) 1,652 (27.1)

 Missing, n (%) 1,847 (19.9) 328 (5.4)
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grouped by measurement. There were 1,521 (25.0%) patients with 
a uACR ≥30 mg/g (1,312 with uACR of 30–300 mg/g and 209 with 
uACR of >300 mg/g) and 1,405 (15.1%) had an eGFR <60 mL/
min/1.73m2.

Of those with a selected eGFR measurement, 3,333 (35.9%) did 
not have a selected uACR measurement, of whom, 2,551 (27.4%) 
did not have any evidence of urine microalbumin testing. The 
proportion of patients without evidence of urine microalbumin 
testing with an eGFR <60 mL/min/1.73m2 was not significantly 
different from those with evidence of urine microalbumin testing 
(412 (16.1%) with no test vs 993 (14.7%) with a test; p=0.09). 
In patients with both an eGFR and uACR (n=5,964), positive 
results were correlated; the proportion of patients with a reduced 
eGFR was greater in those with a raised uACR (10.5% with 
uACR of <30 mg/g vs  25.7% with uACR ≥30 mg/g; p<0.001; 
supplementary material S1, Table S1).

Table 1. Baseline patient demographics at the time 
of estimated glomerular filtration rate and urine 
albumin:creatinine ratio measurement

eGFR, n=9,297 uACR, n=6,090

DBP

  Overall, mmHg, mean  
(SD)

75.9 (9.9) 76.1 (9.5)

  DBP >90 mmHg,  
n (%)

666 (7.2) 449 (7.4)

 Missing, n (%) 1,849 (19.9) 329 (5.4)

HbA1c

 Overall, median (IQR) 7.5 (6.8–8.6) 7.5 (6.9–8.6)

 HbA1c ≥8%, n (%) 2,724 (29.3) 2,142 (35.2)

 Missing, n (%) 1,937 (20.8) 232 (3.8)

Total cholesterol

  Overall, mg/dL, median  
(IQR)

162.4 (135.3–
193.4)

158.6 (135.3–
189.5)

 Missing, n (%) 2,429 (26.1) 505 (8.3)

HDL cholesterol

  Overall, mg/dL, median  
(IQR)

44.9 (38.3–54.1) 45.2 (38.7–54.1)

 Missing, n (%) 3,068 (33.0) 1,001 (16.4)

HDL:total cholesterol 
ratio

 Overall, median (IQR) 0.28 (0.23–0.35) 0.29 (0.23–0.35)

 Missing, n (%) 3,107 (33.4) 1,001 (16.4)

Triglycerides

  Overall, mg/dL, median  
(IQR)

150.6 (108.9–
221.4)

150.6 (106.3– 
212.6)

 Missing, n (%) 5,352 (57.6) 2,779 (45.6)

DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; 
HDL = high-density lipid; HbA1c = glycated haemoglobin; IQR = interquartile 
range; SBP = systolic blood pressure; SD = standard deviation; uACR = urine 
albumin:creatinine ratio.

(Continued)

Model performance

For the uACR models, the PPV increased from 0.250 (95% CI 
0.239–0.260) to 0.271 (95%CI 0.261–0.285) using the minimal-
resource model and to 0.279 (95% CI 0.269–0.293) with the 
addition of blood measurements and ethnicity (Fig 1). These 
correspond to relative improvements of 8.5% and 11.7%, 
respectively. Patients that were older, had a longer duration of 
T2DM, had higher blood pressure measurements and had a higher 
BMI were associated with an increased risk of a raised uACR within 
the minimal-resource model. A higher HbA1c was also associated 
with an increased risk of a raised uACR, but no other blood 
measurements within the full model were found to be statistically 
significant. Ethnicity and gender were not found to be statistically 
significant in the models. While BMI was statistically significant in 
the minimal-resource model, this was not the case in the full model.

For the eGFR models, the PPV increased from 0.151 (95% 
CI 0.144–0.157) to 0.282 (95% CI 0.271–0.294) using the 
minimal-resource model and to 0.286 (95% CI 0.276–0.298) 
with the addition of the blood measurements and ethnicity 
(Fig 1). These correspond to an 86.3% and 90% relative 
improvement, respectively. In the full model, being a woman, 
being Asian or Asian British, being Black or Black British, being 
older, having a longer duration of diabetes, having a higher 
BMI and having more triglycerides were each associated with 
an increased risk of a reduced eGFR. Increased total cholesterol 
and ratio of HDL to total cholesterol were associated with 
a reduced risk of a reduced eGFR. However, in the minimal-
resource model, being a woman was no longer associated with 
a reduced eGFR.

Discussion

Our study has demonstrated that it is possible to identify a 
significantly smaller target population for eGFR priority screening 
using a small number of non-invasive risk factors. We found that 
there was little additional benefit of including invasive clinical 
parameters (ie blood measurements) compared with these 
minimal-resource models. The improvement in PPV demonstrated 
by the minimal-resource eGFR model is promising for screening 
practices where resources are limited: the 86.3% improvement 
corresponds to reducing the screening population by 46.3%. Given 
that a reduced eGFR is indicative of deterioration, it could be 
argued that these patients are most in need of review and should 
be prioritised.

The disparity between the uACR and eGFR model performances 
can be explained by several factors. Firstly, the clinical nature of 
these measures is known to be different. In the CKD trajectory, 
a patient's uACR will usually raise before they exhibit glomerular 
hypofiltration.14 Additionally, it is expected that, as patients age, 
their eGFR will naturally reduce but the corresponding pattern is 
not the case for uACR.15 Secondly, the practices around each of the 
tests differ. The uptake of uACR remains low compared with eGFR 
within UK primary care and, unlike for eGFR, an alternative urine 
protein test (eg a dipstick urine test) may be performed prior to 
uACR testing, potentially resulting in uACR data being available for 
only a subset of the population. However, we found no evidence 
that being tested for microalbuminuria was associated with a 
reduced eGFR, suggesting that the difference in uptake may not 
be correlated with expected CKD severity.
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where additional information is available, it is utilised. However, we 
expect that such information is unlikely to be well-captured within 
lower-to-middle income countries, hence, the minimal-resource 
model is likely to be most appropriate. Supporting a change in 
resource-limited healthcare settings could offer an opportunity to 
reduce the burden of CKD in diabetes patients via earlier detection 
and decrease health inequalities.

Limitations

The routinely collected data for the candidate predictors was 
rarely taken on the day of the outcome measurement. Therefore, 
it may be expected that the in-practice model performance 
differs to the performance we observed within our study. 
Further, confounders (such as comorbidities and pharmaceutical 
therapies) were not well captured in the model due to data 
limitations. Including these may help improve the accuracy and 
precision of the model estimates. Additionally, the data on which 
the models were developed is from UK primary care. Validation 
within international cohorts is required before applying them 
in global markets since the generalisability will be influenced by 
population health and standard care practices including, but not 
limited to, diabetes care. In settings where screening is routinely 
performed and clinical information is regularly recorded, a more 
appropriate model could be developed, utilising a patient's 
historical data.

Conclusion

It is feasible to use non-invasive measurements to identify 
patients with type 2 diabetes that are likely to be currently 
experiencing renal impairment. Our minimal-resource model to 
predict a reduced eGFR can be used to target patients that are 
a high priority for CKD screening. We expect that the tool could 
assist with prioritisation of screening resources, particularly in 
lower-to-middle income countries.  

With primary care services being reduced or suspended during 
the COVID-19 pandemic, we have observed a reduction in 
adherence to annual screening. In particular, serum creatinine 
measurement reduced from 94.4% to 85.7% in patients with 
T2DM in England (2020/2021). While this is still a high overall 
performance, those that went untested were in excess of 660,000 
people. Therefore, it may be sensible to prioritise those patients 
without any recent measurements who are predicted at high risk 
of an abnormal test result using our tool.

Common to the CKD prediction literature, our models were 
developed using a single measurement.16 However, the definition 
of CKD requires sustained kidney damage for at least 3 months. 
Therefore, we do not propose that our tool replaces diagnostic 
testing, but simply offers a solution to target screening resources 
towards those most in need. The tool should be considered as a 
pathway to access screening services where it is not feasible to 
screen everyone. For those that are screened and do not have 
an abnormal result, this information can be utilised in a more 
sophisticated model to predict the onset of CKD in the future, with 
the potential to trigger early prevention.17

Many models to predict CKD in people with T2DM already 
exist.18 However, the focus in the literature remains on prognostic 
modelling (ie predicting a future diagnosis of CKD), whereas we 
have modelled a patient's risk of currently experiencing renal 
impairment. Similar tools have been proposed for the general 
population but our models are specific to patients with diabetes 
and highlight that diabetes is likely to interact with risk factors.19,20 
General population models have not accounted for this. In 
addition, we considered models for both uACR and eGFR, whereas 
the literature tends to focus on eGFR only. Taking this approach, 
we have found that few of the variables associated with a reduced 
eGFR are also associated with a raised uACR. This is an important 
result, especially given the interest to identify patients before they 
experience any reduction in their eGFR.

While the difference in performance between the full and 
minimal-resource models was modest, we would advise that 

Fig 1. Optimism-adjusted positive predictive value and sensitivity of models to predict the probability of an estimated glomerular filtration rate <60 mL/
min/1.73m2 or a urine albumin:creatinine ratio ≥30 mg/g. eGFR = estimated glomerular filtration rate; uACR = urine albumin:creatinine ratio.
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Supplementary material

Additional supplementary material may be found in the online 
version of this article at www.rcpjournals.org/fhj:
S1 – Data wrangling protocol, exclusion diagram and contingency 
table.
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