Skip to main content

Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

Genetic and population studies suggest that onset, progression and ultimate outcome of infection with Mycobacteria, including the agent of tuberculosis Mycobacterium tuberculosis, are strongly influenced by genetic factors. Family-based and case-control linkage and association studies have suggested a complex genetic component for susceptibility to tuberculosis. On the other hand, patients with inborn errors in the IL12/IFNγ circuit may develop disseminated mycobacterial infections following perinatal BCG vaccination. The study of such MSMD (Mendelian Susceptibility to Mycobacterial Diseases) patients has provided much insight into innate and acquired immune defenses against mycobacteria. Parallel genetic analyses in mouse models of mycobacterial infections have also indicated complex genetic control, and have provided candidate genes for parallel testing in humans. Recently, mutations in human IRF8 were discovered and shown to cause two distinct forms of a novel primary immunodeficiency and associated susceptibility to mycobacteria. Autosomal recessive IRF8 deficiency is caused by mutation K108E and associated with severe disease with complete depletion of monocytes and dendritic cells. Mutation T80A causes autosomal dominant IRF8 deficiency and a milder form of the disease with selective loss of a subset of dendritic cells. These findings have established that IRF8 is required for ontogeny of the myeloid lineage and for host response to mycobacteria. The ongoing study of the IRF8 transcriptome has shown promise for the identification of IRF8 dependent pathways that play a critical role in host defense against mycobacteria in particular, and against intracellular pathogens in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Korenromp EL, Bierrenbach AL, Williams BG, Dye C (2009) The measurement and estimation of tuberculosis mortality. Int J Tuberc Lung Dis 13:283–303

    PubMed  CAS  Google Scholar 

  2. Wright A, Zignol M, VanDeun A, Falzon D, Gerdes SR, Fledman K, Hoffner S, Drobnniewski F, Barrera L, van Soolingen D, Boulabhal F, Paramasivan CN, Kam KM, Mitarai S, Nunn P, Raviglione M (2009) Epidemiology of anti-tuberculosis drug resistance 2002–2007: an updated analysis of the Global Project on Anti-tuberculosis Drug Resistance Surveillance. Lancet 373:1861–1873

    Article  PubMed  Google Scholar 

  3. Onyebujoh P, Rook GA (2004) Focus: tuberculosis. Nat Rev Microbiol 2:930–932

    Article  PubMed  CAS  Google Scholar 

  4. World Health Organization (2007) Global leprosy situation. Wkly Epidemiol Rec 82:225–232

    Google Scholar 

  5. Al-Muhsen S, Casanova JL (2008) The genetic heterogeneity of Mendelian susceptibility to mycobacterial diseases. J Allerg Clin Immunol 122:1043–1051

    Article  CAS  Google Scholar 

  6. North RJ, Jung YJ (2004) Immunity to tuberculosis. Ann Rev Immunol 22:599–623

    Article  CAS  Google Scholar 

  7. Levin M, Newport M (2000) Inherited predisposition to mycobacterial infection: historical considerations. Microbes Infect 2:1549–1552

    Article  PubMed  CAS  Google Scholar 

  8. Flanagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  CAS  Google Scholar 

  9. Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577

    Article  PubMed  CAS  Google Scholar 

  10. Behr M, Schurr E, Gros P (2010) Screening for responses to a vile visitor. Cell 140:615–618

    Article  PubMed  CAS  Google Scholar 

  11. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG (2008) Mycobacterium tuberculosis blocks cross-linking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197

    Article  PubMed  CAS  Google Scholar 

  12. Deretic V, Delgado M, Vergne I, Master S, De Haro S, Ponpual M, Singh S (2009) Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 335:169–188

    Article  PubMed  CAS  Google Scholar 

  13. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Elissa NT (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15:267–276

    Article  PubMed  CAS  Google Scholar 

  14. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140:731–742

    Article  PubMed  CAS  Google Scholar 

  15. Chen M, Divangahi M, Gan H, Shin DSJ, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG (2008) Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 205:2791–2801

    Article  PubMed  CAS  Google Scholar 

  16. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar S, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10:899–908

    Article  PubMed  CAS  Google Scholar 

  17. Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn, TR, Moens CB, Ramakrishnan L (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730

    Google Scholar 

  18. Van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

    Article  PubMed  CAS  Google Scholar 

  19. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77:171–192

    Article  PubMed  CAS  Google Scholar 

  20. Hill AV (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40:469–486

    Article  PubMed  CAS  Google Scholar 

  21. Casanova JL, Abel L (2007) Human genetics of infectious diseases: a unified theory. EMBO J 26:915–922

    Article  PubMed  CAS  Google Scholar 

  22. Fortin A, Casanova JL, Abel L, Gros P (2007) Host genetics of mycobacterial diseases in mice and men: the path from BCG-osis to tuberculosis. Annu Rev Genomics Hum Genet 8:163–192

    Article  PubMed  CAS  Google Scholar 

  23. Schurr E, Gros P (2009) A common genetic fingerprint in leprosy and Crohn disease. N Engl J Med 361(27):2666–2668

    Article  PubMed  CAS  Google Scholar 

  24. Lipoldova M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305

    Article  PubMed  CAS  Google Scholar 

  25. Vidal S, Malo D, Marquis JF, Gros P (2008) Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 28:81–132

    Article  CAS  Google Scholar 

  26. Di Pietrantonio T, Hernandez C, Girard M, Verville A, Orlova M, Belley A, Behr MA, Loredo-Osti JC, Schurr E (2010) Strain-specific differences in the genetic control of two closely related mycobacteria. PLoS Pathog 6(10):e1001169

    Article  PubMed  CAS  Google Scholar 

  27. Richer E, Qureshi ST, Vidal SM, Malo D (2008) Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mamm Genome 19(5):309–317

    Article  PubMed  CAS  Google Scholar 

  28. Riendeau CJ, Kornfeld H (2003) THP-1 cell apoptosis in response to mycobacterial infection. Infect Immun 71:254–259

    Article  PubMed  CAS  Google Scholar 

  29. Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PRA (1998) Fas-ligand induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160:5448–5454

    PubMed  CAS  Google Scholar 

  30. Gutierrez M, Master S, Singh S, Taylor G, Colombo M, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  PubMed  CAS  Google Scholar 

  31. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular Mycobacteria. Science 313:1438–1441

    Google Scholar 

  32. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    Article  PubMed  CAS  Google Scholar 

  33. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon-g gene disrupted mice. J Exp Med 178:2243–2247

    Article  PubMed  CAS  Google Scholar 

  34. Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin-12 is crucial for the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186:39–45

    Article  PubMed  CAS  Google Scholar 

  35. Casanova JL, Jouanguy E, Lamhamedi S, Blanche S, Fischer A (1995) Immunological conditions of children with BCG disseminated infection. Lancet 346:581

    Article  PubMed  CAS  Google Scholar 

  36. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 33:D514–D517

    Article  PubMed  CAS  Google Scholar 

  37. Dorman SE, Holland SM (2000) Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 11:321–333

    Article  PubMed  CAS  Google Scholar 

  38. Levin M, Newport MJ, D’Souza S, Kalabalikis P, Brown IN et al (1995) Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene. Lancet 345:79–83

    Article  PubMed  CAS  Google Scholar 

  39. Cottle LE (2011) Mendelian susceptibility to mycobacterial disease. Clin Genet 79:17–22

    Article  PubMed  CAS  Google Scholar 

  40. Alcais A, Fieschi C, Abel L, Casanova JL (2005) Tuberculosis in children and adults: two distinct genetic diseases. J Exp Med 202:1617–1621

    Article  PubMed  CAS  Google Scholar 

  41. Allende LM, Lopez-Goyanes A, Paz-Artal E, Corell A, Garcia-Perez MA et al (2001) A point mutation in a domain of gamma interferon receptor 1 provokes severe immunodeficiency. Clin Diagn Lab Immunol 8:133–137

    PubMed  CAS  Google Scholar 

  42. Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN et al (2003) Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis 37:302–306

    Article  PubMed  CAS  Google Scholar 

  43. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D et al (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis. J Clin Invest 100:2658–2664

    Article  PubMed  CAS  Google Scholar 

  44. Özbek N, Fieschi C, Yilmaz BT, De Beaucoudrey L, Bikmaz YE, Casanova JL (2005) Interleukin-12 receptor beta 1 chain deficiency in a child with disseminated tuberculosis. Clin Infect Dis 40(6):e55–e58

    Article  PubMed  Google Scholar 

  45. Remus N, El Baghdadi J, Fieschi C, Feinberg J, Quintin T et al (2004) Association of IL12RB1 polymorphisms with pulmonary tuberculosis in adults in Morocco. J Infect Dis 190:580–587

    Article  PubMed  CAS  Google Scholar 

  46. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  PubMed  CAS  Google Scholar 

  47. MacLennan C, Fieschi C, Lammas DA, Picard C, Dorman SE et al (2004) Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J Infect Dis 190:1755–1757

    Article  PubMed  CAS  Google Scholar 

  48. Altare F, Lammas D, Revy P, Jouanguy E, Doffinger R et al (1998) Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest 102:2035–2040

    Article  PubMed  CAS  Google Scholar 

  49. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T et al (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438

    Article  PubMed  Google Scholar 

  50. Fieschi C, Bosticardo M, de Beaucoudrey L, Boisson-Dupuis S, Feinberg J et al (2004) A novel form of complete IL-12/IL-23 receptor beta1 deficiency with cell surface-expressed nonfunctional receptors. Blood 104:2095–2101

    Article  PubMed  CAS  Google Scholar 

  51. Sanal O, Turul T, De Boer T, Van de Vosse E, Yalcin I et al (2006) Presentation of interleukin-12/-23 receptor beta1 deficiency with various clinical symptoms of Salmonella infections. J Clin Immunol 26:1–6

    Article  PubMed  CAS  Google Scholar 

  52. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF et al (1996) Interferon-gamma receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 335:1956–1961

    Article  PubMed  CAS  Google Scholar 

  53. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335:1941–1949

    Article  PubMed  CAS  Google Scholar 

  54. Dorman SE, Holland SM (1998) Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 101:2364–2369

    Article  PubMed  CAS  Google Scholar 

  55. Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J et al (2006) Novel STAT1 alleles in otherwise healthy patients with Mycobacterial disease. PLoS Genet 2(8):e131

    Article  PubMed  CAS  Google Scholar 

  56. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S et al (2001) Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293:300–303

    Article  PubMed  CAS  Google Scholar 

  57. Kong XF, Ciancanelli M, Al-Haijar S, Alsina L, Zumwalt T, Bustamante J, Feinberg J, Audry M, Prando C, Bryant V, Kreins A, Bogunovic D, Halwani R, Zhang XX, Abel L, Chaussabel D, Al-Muhsen S, Casanova JL, Boisson-Dupuis S (2010) A novel form of STAT1 deficiency impairing early but not late responses to interferon. Blood 116:5895–58906

    Article  PubMed  CAS  Google Scholar 

  58. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL et al (2006) X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203:1745–1759

    Article  PubMed  CAS  Google Scholar 

  59. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL (2011) Germline CYBB mutations that selectively affect macrophages and kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12:213–221

    Article  PubMed  CAS  Google Scholar 

  60. Forbes JR, Gros P (2001) Divalent metal transport by Nramp proteins at the interface of host:parasite interactions. Trends Microbiol 9:397–403

    Article  PubMed  CAS  Google Scholar 

  61. Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites:Isolation of a candidate for Bcg. Cell 73:469–486

    Article  PubMed  CAS  Google Scholar 

  62. Vidal S, Tremblay M, Govoni G, Sebastiani G, Malo D, Olivier M, Skamene E, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp 1 gene. J Exp Med 182:655–666

    Article  PubMed  CAS  Google Scholar 

  63. Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular parasites: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730

    Article  PubMed  CAS  Google Scholar 

  64. Jabado N, Jankowsky A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: Nramp1 functions as a pH-dependent Manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248

    Article  PubMed  CAS  Google Scholar 

  65. Hackam DJ, Rotstein OD, Zhang WJ, Gruenheid S, Gros P, Grinstein S (1998) Host resistance to intracellular infections: mutation at Nramp1 impair phagosomal acidification. J Exp Med 188:351–364

    Article  PubMed  CAS  Google Scholar 

  66. Cuellar-Mata P, Jabado N, Liu J, Finlay BB, Gros P, Grinstein S (2002) Nramp1 modifies the fusion of Salmonella typhimurium containing vacuoles with cellular endomembranes in macrophages. J Biol Chem 277:2258–2265

    Article  PubMed  CAS  Google Scholar 

  67. Turcotte K, Loredo-Osti JC, Fortin P, Schurr E, Morgan K, Gros P (2006) Complex genetic control of susceptibility to Mycobacterium bovis infection in wild-derived Mus spretus mice. Genes Immun 7:684–687

    Article  PubMed  CAS  Google Scholar 

  68. Sancho-Shimizu V, Khan R, Mostowy S, Lariviere L, Wilkinson R, Riendeau N, Behr M, Malo D (2007) Molecular genetic analysis of two loci (Ity2 and Ity3) involved in the host response to infection with Salmonella typhimurium using congenic mice and expression profiling. Genetics 177:1125–1139

    Article  PubMed  CAS  Google Scholar 

  69. Roy MF, Riendeau N, Bédard C, Hélie P, Min-Oo G, Turcotte K, Gros P, Canonne-Hergaux F, Malo D (2007) Pyruvate Kinase deficiency confers susceptibility to Salmonella in mice. J Exp Med 204:2949–2961

    Article  PubMed  CAS  Google Scholar 

  70. Turcotte K, Gauthier S, Malo D, Tam M, Stevenson MM, Gros P (2007) Icsbp1/Irf-8 is required for innate and adaptive immune responses against intracellular pathogens. J Immunol 179:2467–2476

    PubMed  CAS  Google Scholar 

  71. Marquis JF, LaCourse R, Ryan L, North RJ, Gros P (2009) Genetic and functional characterization of the Trl3 locus in defenses against tuberculosis. J Immunol 182(6):3757–3767

    Article  PubMed  CAS  Google Scholar 

  72. Dubos RJ, Dubos J (1952) The white plague; tuberculosis, man, and society. Little Brown, Boston, p 277

    Google Scholar 

  73. Hinman AR, Judd JM, Kolnik JP, Daitch PB (1976) Changing risks in tuberculosis. Am J Epidemiol 103:486–497

    PubMed  CAS  Google Scholar 

  74. Rieder HL, Kelly GD, Bloch AB, Cauthen GM, Snider DE Jr (1991) Tuberculosis diagnosed at death in the United States. Chest 100:678–681

    Article  PubMed  CAS  Google Scholar 

  75. Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322:422–427

    Article  PubMed  CAS  Google Scholar 

  76. Motulsky AG (1960) Metabolic polymorphisms and the role of infectious diseases in human evolution. Hum Biol 32:28–62

    PubMed  CAS  Google Scholar 

  77. Sousa AO, Salem JI, Lee FK, Vercosa MC, Cruaud P, Bloom BR, Lagrange PH, David HL (1997) An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon. Proc Natl Acad Sci U S A 94:13227–13232

    Article  PubMed  CAS  Google Scholar 

  78. Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    PubMed  CAS  Google Scholar 

  79. Alter A, Grant A, Abel L, Alcais A, Schurr E (2011) Leprosy as a genetic disease. Mamm Genome 22:19–31

    Article  PubMed  CAS  Google Scholar 

  80. Vannberg FO, Chapman SJ, Hill AV (2011) Human genetic susceptibility to intracellular pathogens. Immunol Rev 240:105–116

    Article  PubMed  CAS  Google Scholar 

  81. Bellamy R, Ruwende C, Corrah T, McAdam KPWJ, Whittle HC, Hill AVS (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. New Engl J Med 338:640–644

    Article  PubMed  CAS  Google Scholar 

  82. Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J (2006) SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 10:3–12

    PubMed  CAS  Google Scholar 

  83. Greenwood CM, Fujiwara TM, Boothroyd LJ, Miller MA, Frappier D et al (2000) Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 67:405–416

    Article  PubMed  CAS  Google Scholar 

  84. Malik S, Abel L, Tooker H, Poon A, Simkin L et al (2005) Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci U S A 102:12183–12188

    Article  PubMed  CAS  Google Scholar 

  85. Abel L, Sanchez FO, Oberti J, Thuc NV, Hoa LV, Lap VD, Skamene E, Lagrange PH, Schurr E (1998) Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 177:133–145

    Article  PubMed  CAS  Google Scholar 

  86. Alcais A, Sanchez FO, Thuc NY, Lap VD, Oberti J, Lagrange PH, Schurr E, Abel L (2000) Granulomatous reaction to intradermal injection of lepromin (Mitsuda Reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J Infect Dis 181:302–308

    Article  PubMed  CAS  Google Scholar 

  87. Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT et al (2006) Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun 7:185–189

    Article  PubMed  CAS  Google Scholar 

  88. Gallant CJ, Malik S, Jabado N, Cellier M, Simkin L, Finlay BB, Graviss EA, Gros P, Musser JM, Schurr E (2007) Reduced in vitro functional activity of human NRAMP1 (SLC11A1) allele that pre-disposes to increased risk of pediatric tuberculosis disease. Genes Immun 8:691–698

    Article  PubMed  CAS  Google Scholar 

  89. Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B et al (2006) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci U S A 103:10364–10368

    Article  PubMed  CAS  Google Scholar 

  90. King KY, Lew JD, Ha NP, Lin JS, Ma X, Graviss EA, Goodell MA (2011) Polymorphic allele of human IRGM1 is associated with susceptibility to tuberculosis in African Americans. PLoS ONE 6(1):e16317

    Article  PubMed  CAS  Google Scholar 

  91. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659

    Article  PubMed  CAS  Google Scholar 

  92. Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y et al (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172:1163–1168

    PubMed  CAS  Google Scholar 

  93. Delgado JC, Baena A, Thim S, Goldfeld AE (2006) Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia. J Immunol 176:1090–1097

    PubMed  CAS  Google Scholar 

  94. Goldfeld AE, Delgado JC, Thim S, Bozon MV, Uglialoro AM et al (1998) Association of an HLA-DQ allele with clinical tuberculosis. JAMA 279:226–228

    Article  PubMed  CAS  Google Scholar 

  95. Verdu P, Barreiro LB, Patin E, Gessain A, Cassar O et al (2006) Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum Mol Genet 15:2650–2658

    Article  PubMed  CAS  Google Scholar 

  96. Remus N, Alcais A, Abel L (2003) Human genetics of common mycobacterial infections. Immunol Res 28:109–129

    Article  PubMed  CAS  Google Scholar 

  97. Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H et al (2006) Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20

    Article  PubMed  CAS  Google Scholar 

  98. Kobayashi K, Yuliwulandari R, Yanai H, Lien LT, Hang NT, Hijikata M, Keicho N, Tokunaga K (2011) Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Hum Immunol 72:741–745

    Google Scholar 

  99. Flores-Villanueva PO, Ruiz-Morales JA, Song CH, Flores LM, Jo EK et al (2005) A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 202:1649–1658

    Article  PubMed  CAS  Google Scholar 

  100. Uciechowski P, Imhoff H, Lange C, Meyer CG, Browne EN, Kirsten DK, Schroder AK, Schaff B, Al-Lahham A, Reinert RR, Reiling N, Haase H, Hartzmann A, Fleischer D, Heussen N, Kleines M, Rink L Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in lack of TLR1 cell surface expression. J Leukoc Biol 90:377–388

    Google Scholar 

  101. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G, Sow O, Gustafson P, Mwangulu F, van Helden P, Fine P, Hoal EG, Hill AV (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178:203–207

    Article  PubMed  CAS  Google Scholar 

  102. Adams LA, Moller M, Nebel A, Schreiber S, van der Merwe L, van Helden PD, Hoal EG (2011) Polymorphisms in MCR3 promotor and CTSZ 3’UTR are associated with tuberculosis susceptibility. Eur J Hum Genet 19:676–681

    Article  PubMed  CAS  Google Scholar 

  103. Baker AR, Zalwango S, Malone LL, Igo RP, Qiu F, Nsereko M, Adams MD, Supelak P, Mayania-Kizza H, Boom WH, Stein CM (2011) Genetic susceptibility in tuberculosis associated with cathepsin Z haplotype in a Ugandan household contact study. Hum Immunol 72:426–430

    Article  PubMed  CAS  Google Scholar 

  104. Xiao J, Sun L, Yan H, Jiao W, Miao Q, Feng W, Wu X, Gu Y, Jiao A, Guo Y, Peng X, Shen A (2010) Metaanalysis of P2X7 gene polymorphisms and tuberculosis susceptibility. FEMS Immunol Med Microbiol 60:165–170

    Article  PubMed  CAS  Google Scholar 

  105. Herb F, Thye T, Niemann S, Browne ENL, Chinbuah MA, Gyapong J, Osei Y, Owusu-Dabo E, Werz O, Rüsch-Gerdes S, Horstmann RD, Meyer CG (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17:1052–1060

    Google Scholar 

  106. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG (2003) Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 361:1871–1872

    Article  PubMed  CAS  Google Scholar 

  107. Tso HW, Ip WK, Chong WP, Tam CM, Chiang AK, Lau YL (2005) Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun 6:358–363

    Article  PubMed  CAS  Google Scholar 

  108. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci U S A 97:8005–8009

    Article  PubMed  CAS  Google Scholar 

  109. Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M et al (2006) An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203:1679–1684

    Article  PubMed  CAS  Google Scholar 

  110. Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J, Summanapan S, Yamada N, Moolphate S, Chuchotaworn C, Chaipraset A, Manosuthi W, Kantipong P, Kanitwittaya S, Sura T, Khusmith S, Tokunaga K, Sawanpanyalert P, Keicho N (2008) Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10:77–83

    Article  PubMed  CAS  Google Scholar 

  111. Ridruechai C, Mahasirimongkol S, Phromjai J, Yanai H, Nishida N, Matsushita I, Ohashi J, Yamada N, Moolphate S, Summanapan S, Chuchottaworn C, Manosuthi W, Kantipong P, Kanitvittaya S, Sawanpanyalert P, Keicho N, Khusmith S, Tokunaga K (2010) Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis. Genes Immun 11:416–422

    Article  PubMed  CAS  Google Scholar 

  112. Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B, Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC, Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A, African TB Genetics Consortium, Welcome Trust Case Control Consortium, Morris AP, Meyer CG, Horstmann RD, Hill AV (2010) Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42:739–741

    Google Scholar 

  113. Medina E, North RJ (1996) Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. J Exp Med 183:1045–1051

    Article  PubMed  CAS  Google Scholar 

  114. Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93:270–274

    Article  PubMed  CAS  Google Scholar 

  115. Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 97:8560–8565

    Article  PubMed  CAS  Google Scholar 

  116. Yan BS, Pichugin AV, Jobe O, Helming L, Eruslanov EB, Gutiérrez-Pabello JA et al (2007) Progression of pulmonary tuberculosis and efficiency of bacillus Calmette-Guérin vaccination are genetically controlled via a common sst1-mediated mechanism of innate immunity. J Immunol 179(10):6919–6932

    PubMed  CAS  Google Scholar 

  117. Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, Bloch KD (2000) Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20:6138–6146

    Article  PubMed  CAS  Google Scholar 

  118. Sissons J, Yan BS, Pichugin AV, Kirby A, Daly MJ, Kramnik I (2009) Multigenic control of tuberculosis resistance: analysis of a QTL on mouse chromosome 7 and its synergism with sst1. Genes Immun 10(1):37–46

    Article  PubMed  CAS  Google Scholar 

  119. Nikonenko BV, Averbakh MM Jr, Lavebratt C, Schurr E, Apt AS (2000) Comparative analysis of mycobacterial infections in susceptible I/St and resistant A/Sn inbred mice. Tuberc Lung Dis 80:15–25

    Article  CAS  Google Scholar 

  120. Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E (1999) Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 180:150–155

    Article  PubMed  CAS  Google Scholar 

  121. Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S et al (2003) Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71:126–131

    Article  PubMed  CAS  Google Scholar 

  122. Kahler AK, Persson AS, Sanchez F, Kallstrom H, Apt AS et al (2005) A new coding mutation in the Tnf-alpha leader sequence in tuberculosis-sensitive I/St mice causes higher secretion levels of soluble TNF-alpha. Genes Immun 6:620–627

    Article  PubMed  CAS  Google Scholar 

  123. Mitsos LM, Cardon L, Fortin A, Ryan L, Lacourse R, North RJ, Gros P (2000) Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1:467–477

    Article  PubMed  CAS  Google Scholar 

  124. Mitsos L, Cardon LR, Ryan L, Lacourse R, North RJ, Gros P (2003) Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci U S A 100:6610–6615

    Article  PubMed  CAS  Google Scholar 

  125. Marquis JF, Nantel A, La Course R, Ryan L, North RJ, Gros P (2008) Fibrotic response as a distinguishing feature of resistance and susceptibility to pulmonary infection with Mycobacterium tuberculosis. Infect Immun 76(1):78–88

    Article  PubMed  CAS  Google Scholar 

  126. Skamene E, Gros P, Forget A, Kongshavn PA, St-Charles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297:506–509

    Article  PubMed  CAS  Google Scholar 

  127. Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, Gros P (2005) A mutation in the Icsbp/IRF-8 gene causes susceptibility to infections and a CML-like syndrome in BXH-2 mice. J Exp Med 201:881–890

    Article  PubMed  CAS  Google Scholar 

  128. Turcotte K, Gauthier S, Mitsos LM, Shustik C, Copeland NG, Jenkins NA, Fournet JC, Jolicoeur P, Gros P (2004) Genetic control of Myeloproliferation in BXH-2 mice. Blood 103:2343–2350

    Article  PubMed  CAS  Google Scholar 

  129. Bowen H, Biggs TE, Phillpis E, Baker ST, Perry VH, Mann DA, Barton CH (2002) c-Myc represses and Miz-1 activates the murine natural resistance-associated protein 1 promotor. J Biol Chem 277:34997–35006

    Article  PubMed  CAS  Google Scholar 

  130. Alter-Koltunoff M, Ehrlich S, Dror N, Azriel A, Eilers M, Hauser H et al (2003) Nramp1-mediated innate resistance to intraphagosomal pathogens is regulated by IRF-8, PU.1 and Miz-1. J Biol Chem 278:44025–44032

    Article  PubMed  CAS  Google Scholar 

  131. Alter-Koltunoff M, Goren S, Nousbeck J, Feng CG, Ozato K, Azriel A, Levi BZ (2008) Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J Biol Chem 283:2724–2733

    Article  PubMed  CAS  Google Scholar 

  132. Marquis JF, LaCourse R, Ryan L, North RJ, Gros P (2009) Disseminated and rapidly fatal tuberculosis in mice bearing a defective allele at IRF8/ICSBP. J Immunol 182(5):3008–3015

    Article  PubMed  CAS  Google Scholar 

  133. Tailor P, Tamura T, Morse HC 3rd, Ozato K (2008) The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942–1945

    Article  PubMed  CAS  Google Scholar 

  134. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keefe M (2001) Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 166:5448–5455

    PubMed  CAS  Google Scholar 

  135. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    Article  PubMed  CAS  Google Scholar 

  136. Eklund EA, Jalava A, Kabar R (1998) PU.1, interferon regulatory factor 1, and interferon consensus sequence binding protein cooperate to increase gp91phox expression. J Biol Chem 272:13957–13965

    Article  Google Scholar 

  137. Kanno Y, Levi BZ, Tamura T, Ozato K (2005) Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. J Interf Cytokine Res 25:770–779

    Article  CAS  Google Scholar 

  138. Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K (2005) IFN regulatory factor 4 and 8 govern dendritic cell subset development and their functional diversity. J Immunol 174:2573–2581

    PubMed  CAS  Google Scholar 

  139. Schroder K, Lichtinger M, Irvine KM, Brion K, Trieu A et al (2007) PU.1 and ICSBP control constitutive and IFNg-regulated Tlr9 expression in mouse macrophages J Leuk. Biol 81:1577–1590

    CAS  Google Scholar 

  140. Fortier A, Doiron K, Saleh M, Grinstein S, Gros P (2009) Restriction of Legionella pneumophila replication in macrophages requires concerted action of transcriptional regulators Irf1, Irf8, and the nod-like receptor Naip5. Infect Immun 77(11):4794–4805

    Article  PubMed  CAS  Google Scholar 

  141. Contursi C, Wang IM, Gabriele L, Gadina M, O’Shea J, Morse HC 3rd, Ozato K (2000) IFN consensus sequence binding protein potentiates STAT1-dependent activation of IFNg-responsive promotors in macrophages. Proc Natl Acad Sci U S A 97:91–96

    Article  PubMed  CAS  Google Scholar 

  142. Giese NA, Gabriele L, Doherty TM, Klinman DM, Tadesse-Heath L, Contursi C, Epstein SL, Morse HC 3rd (1997) Interferon consensus sequence binding protein, a transcription factors of the IFN regulatory factor family regulates immune responses in vivo through control of interleukin 12 expression. J Exp Med 186:1535–1546

    Article  PubMed  CAS  Google Scholar 

  143. Masumi A, Tamaoki S, Wang IM, Ozaro K, Komuor K (2002) IRF-8/ICSBP and IRF1 cooperatively stimulate mouse IL-12 promotor activity in macrophages. FEBS Lett 531:348–353

    Article  PubMed  CAS  Google Scholar 

  144. Wang IM, Contursi C, Masumi A, Ma X, Trinchieri G, Ozato K (2000) An IFNg-inducible transcription factor, IFN consensus sequence binding protein (ICSBP) stimulates IL-12 p40 expression in macrophages. J Immunol 165:271–279

    PubMed  CAS  Google Scholar 

  145. Zhu C, Rao K, Xiong H, Gagnidze K, Li F, Horvath K, Plevy S (2003) Activation of the murine interleukin 12 p40 promotor by functional interaction between NFAT and ICSBP. J Biol Chem 278:39372–39382

    Article  PubMed  CAS  Google Scholar 

  146. Liu J, Guan X, Tamura T, Ozato K, Ma X (2004) Synergistic activation of Interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J Biol Chem 279:55609–55615

    Article  PubMed  CAS  Google Scholar 

  147. Kim YM, Kang HS, Paik SG, Pyun KH, Andersin KL, Torbett BE, Choi I (1999) Roles of IFN consensus sequence binding protein and PU.1 in regulation of IL-18 gene expression. J Immunol 163:2000–2007

    PubMed  CAS  Google Scholar 

  148. Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M et al (1997) Crucial role of interferon consensus sequence binding protein but neither of intereferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med 185:921–931

    Article  PubMed  CAS  Google Scholar 

  149. Hein J, Kempf VA, Diebold J, Bucheler N, Preger S et al (2000) Interferon consensus sequence binding protein confers resistance against Yersinia enterocolitica. Infect Immun 68:1408–1417

    Article  PubMed  CAS  Google Scholar 

  150. Scharton-Kersten T, Contursi C, Masumi A, Sher A, Ozato K (1997) Interferon consensus binding protein-deficient mice display impaired resistance to intracellular infections due to primary defect in interleukin IL12p40 induction. J Exp Med 186:1523–1534

    Article  PubMed  CAS  Google Scholar 

  151. Ko J, Gendron-Fitzpatrick A, Splitter GA (2002) Susceptibility of IFN regulatory factor-1 and IFN consensus binding protein deficient mice to brucellosis. J Immunol 168:2433–2440

    PubMed  CAS  Google Scholar 

  152. Ouyang X, Zhang R, Yang J, Li Q, Qin L, Zhu C, Liu J, Ning H, Shin MS, Gupta M, Qi CF, He JC, Lira SA, Morse HC 3rd, Ozato K, Mayer L, Xiong H (2011) Transcripton factors IRF8 directs a silencing programme for TH17 cell differentiation. Nat Commun 2:314–325

    Article  PubMed  CAS  Google Scholar 

  153. Tamura T, Nagamura Inoue T, Shmeltzer Z, Kuwata T, Ozato K (2000) ICSBP directs bipotential progenitor cells to differentiate into mature macrophages. Immunity 13:155–165

    Google Scholar 

  154. Wang H, Morse HC 3rd (2009) IRF8 regulates myeloid and B lymphocyte lineage diversification. Immunol Res 43:109–117

    Article  PubMed  CAS  Google Scholar 

  155. Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P, Giese NA, Ozato K, Morse HC (1999) Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 190:411–421

    Article  PubMed  CAS  Google Scholar 

  156. Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K (2011) IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 71:2882–2891

    Article  PubMed  CAS  Google Scholar 

  157. Tamura T, Thotakura P, Tanaka TS, Ko MSH, Ozato K (2005) Identification of target genes and a unique cis element regulated by IRF8 in developing macrophages. Blood 106:1938–1947

    Article  PubMed  CAS  Google Scholar 

  158. Tsujimura H, Tamura T, Oxato K (2003) IFN consensus sequence binding protein/IFN regulatory factor 8 drives development of type I IFN producing plasmacytoid dendritic cells. J Immunol 170:1131–1135

    PubMed  CAS  Google Scholar 

  159. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C, Ozato K, Sher A (2003) Essential role for ICSBP in the in vivo development of murine CD8a+ dendritic cells. Blood 101:305–310

    Google Scholar 

  160. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse HC 2nd, Belardelli F, Gabriele L (2002) ICSBP is essential for the development of mouse type I intereferon-producing cells and for the generation and activation of CD8a+ dendritic cells. J Exp Med 196:1415–1425

    Article  PubMed  CAS  Google Scholar 

  161. Vila-Del-Sol V, Punzon C, Fresno M (2008) IFNg induced TNFa expression is regulated by intereferon regulatory factors 1 and 8 in mouse macrophages. J Immunol 181:4461–4470

    PubMed  CAS  Google Scholar 

  162. Liu J, Ma X (2006) Intereferon regulatory factor 8 regulates RANTES gene transcription and cooperation with interferon regulatory gactor 1, NF-kB, and PU.1. J Biol Chem 281:19188–19195

    Article  PubMed  CAS  Google Scholar 

  163. Lohoff M, Ferrick D, Mittrucker HW, Duncan GS, Bischof S, Rollinghoff M, Mak TW (1997) Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6:681–689

    Article  PubMed  CAS  Google Scholar 

  164. Zhang J, Qian X, Ning H, Yang J, Xiong H, Liu J (2010) Activation of the IL-27p28 gene transcription by interferon regulatory factor 8 in cooperation with interferon regulatory factor 1. J Biol Chem 285:21269–21281

    Article  PubMed  CAS  Google Scholar 

  165. Fragale A, Gabriele L, Stellacci E, Borghi P, Perrotti E, Ilari R et al (2008) IFN regulatory factor-1 negatively regulates CD4+CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J Immunol 181:1673–1682

    PubMed  CAS  Google Scholar 

  166. Yamada H, Mizuno S, Sugawara I (2002) Interferon regulatory factor 1 in mycobacterial infection. Microbiol Immunol 46:751–760

    PubMed  CAS  Google Scholar 

  167. Smith MA, Wright G, Wu J, Tailor P, Ozato K, Chen X, Wei S, Piskurich JF, Ting JP, Wight KL (2011) Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J Biol Chem 286:7893–7904

    Article  PubMed  CAS  Google Scholar 

  168. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15:1066–1071

    Article  PubMed  CAS  Google Scholar 

  169. Nishikawa K, Nakashima T, Hayashi M, Fukunaga T, Kato S, Kodama T, Takahashi S, Calame K, Takayanagi H (2011) Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci U S A 107:3117–3122

    Article  Google Scholar 

  170. Wang H, Lee CH, Qi C, Tailor P, Feng J, Abbasi S, Atsumi T, Morse HC (2008) IRF8 regulates B cell lineage specification, commitment, and differentiation. Blood 112:4028–4038

    Article  PubMed  CAS  Google Scholar 

  171. Feng J, Wang H, Shin DM, Masiuk M, Qi CF, Morse HC (2011) IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools. J Immunol 186:1458–1466

    Article  PubMed  CAS  Google Scholar 

  172. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt T, Kong X, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova JL, Gros P (2011) Human IRF8 deficiency restricts monocyte and dendritic cell development and anti-mycobacterial immunity. N Engl J Med 365:127–138

    Google Scholar 

  173. Dror N, Alter-Koltunoff MA, Azriel A, Amariglio N, Jacob-Hirsh J et al (2007) Identification of IRF8 and IRF1 target genes in activated macrophages. Mol Immunol 44:338–346

    Article  PubMed  CAS  Google Scholar 

  174. Huang W, Zhu C, Wang H, Horvath E, Eklund EA (2008) The Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Represses PTPN13 Gene Transcription in Differentiating Myeloid Cells. J Biol Chem 283:7921–7935

    Article  PubMed  CAS  Google Scholar 

  175. Kubosaki A, Lindgren G, Tagami M, Simon C, Tomaru Y, Miura H, Suzuki T, Arner E, Forrest AR, Irvine KM, Schroder K, Hasegawa Y, Kanamori-Katayama M, Rehli M, Hume DA, Kawai J, Suzuki M, Suzuki H, Hayashizaki Y (2010) The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Mol Immunol 47:2295–2302

    Article  PubMed  CAS  Google Scholar 

  176. Marquis JF, Kapoustina O, Langlais D, Rubby R, Dufour CR, Kim BH, MacMicking JD, Gigure V, Gros P (2011) Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet 7(6):e1002097

    Article  PubMed  CAS  Google Scholar 

  177. Huang BW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protocols 4:44–57

    Article  CAS  Google Scholar 

  178. MacMicking JD (2004) IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol 25:601–609

    Article  PubMed  CAS  Google Scholar 

  179. Degrandi D, Konermann C, Beuter-Gunia C, Kresse A, Wurthner J et al (2007) Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense. J Immunol 179:7729–7740

    PubMed  CAS  Google Scholar 

  180. Shenoy AR, Kim BH, Choi HP, Matsuzawa T, Tiwari S et al (2007) Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology 212:771–784

    Article  PubMed  CAS  Google Scholar 

  181. Tsujimura H, Tamura TH, Kong HJ, Nishiyama A, Ishii KJ, Klinman DM, Ozato K (2004) Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J Immunol 172:6820–6827

    PubMed  CAS  Google Scholar 

  182. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR (1992) Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 89:12013–12017

    Article  PubMed  CAS  Google Scholar 

  183. Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, Hanke K, Gross O, Ruland J, Kaufmann SH (2010) The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207:777–792

    Article  PubMed  CAS  Google Scholar 

  184. Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S (2007) Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect Immun 75:5127–5134

    Article  PubMed  CAS  Google Scholar 

  185. Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD (2001) Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 98:7958–7963

    Article  PubMed  CAS  Google Scholar 

  186. Saunders BM, Frank AA, Orme IM, Cooper AM (2002) CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216:65–72

    Article  PubMed  CAS  Google Scholar 

  187. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR (2000) Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97:4204–4208

    Article  PubMed  CAS  Google Scholar 

  188. Hawkes M, Li X, Crockett M, Diassiti A, Finney C, Min-Oo G, Liles WC, Liu J, Kain KC (2010) CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis 10:299

    Article  PubMed  CAS  Google Scholar 

  189. Repique CJ, Li A, Brickey WJ, Ting JP, Collins FM, Morris SL (2003) Susceptibility of mice deficient in the MHC class II transactivator to infection with Mycobacterium tuberculosis. Scand J Immunol 58:15–22

    Article  PubMed  CAS  Google Scholar 

  190. Hu C, Mayadas-Norton T, Tanaka K, Chan J, Salgame P (2000) Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. J Immunol 165:2596–2602

    PubMed  CAS  Google Scholar 

  191. Marakalala MJ, Guler R, Matika L, Murray G, Jacobs M, Brombacher F, Rothfuchs AG, Sher A, Brown GD (2011) The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes Infect 13:198–201

    Article  PubMed  CAS  Google Scholar 

  192. Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B, Gerard NP, Gerard C, Ehlers S, Mollenkopf HJ, Kaufmann SH (2003) Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33:2676–2686

    Article  PubMed  CAS  Google Scholar 

  193. Hessmann M, Rausch A, Ruckerl D, Adams PS, Simon M, Gilfillan S, Colonna M, Ehlers S, Holscher C (2011) DAP10 contributes to CD8(+) T cell-mediated cytotoxic effector mechanisms during Mycobacterium tuberculosis infection. Immunobiology 216:639–647

    Article  PubMed  CAS  Google Scholar 

  194. Maglione PJ, Xu J, Casadevall A, Chan J (2008) Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol 180:3329–3338

    PubMed  CAS  Google Scholar 

  195. Cooper AM, D’Souza C, Frank AA, Orme IM (1997) The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect Immun 65:1317–1320

    PubMed  CAS  Google Scholar 

  196. Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD (2011) A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332:717–721

    Article  PubMed  CAS  Google Scholar 

  197. Johnson CM, Cooper AM, Frank AA, Bonorino CB, Wysoki LJ, Orme IM (1997) Mycobacterium tuberculosis aerogenic rechallenge infections in B cell-deficient mice. Tuber Lung Dis 78:257–261

    Article  PubMed  CAS  Google Scholar 

  198. Liesenfeld O, Parvanova I, Zerrahn J, Han SJ, Heinrich F, Munoz M, Kaiser F, Aebischer T, Buch T, Waisman A, Reichmann G, Utermohlen O, von Stebut E, von Loewenich FD, Bogdan C, Specht S, Saeftel M, Hoerauf A, Mota MM, Konen-Waisman S, Kaufmann SH, Howard JC (2011) The IFN-gamma-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS One 6:e20568

    Article  PubMed  CAS  Google Scholar 

  199. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94:5243–5248

    Article  PubMed  CAS  Google Scholar 

  200. Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J (2001) The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69:7711–7717

    Article  PubMed  CAS  Google Scholar 

  201. Ghosh S, Chackerian AA, Parker CM, Ballantyne CM, Behar SM (2006) The LFA-1 adhesion molecule is required for protective immunity during pulmonary Mycobacterium tuberculosis infection. J Immunol 176:4914–4922

    PubMed  CAS  Google Scholar 

  202. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  PubMed  CAS  Google Scholar 

  203. Kamijo R, Le J, Shapiro D, Havell EA, Huang S, Aguet M, Bosland M, Vilcek J (1993) Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J Exp Med 178:1435–1440

    Article  PubMed  CAS  Google Scholar 

  204. Yamada H, Mizumo S, Horai R, Iwakura Y, Sugawara I (2000) Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-knockout mice. Lab Invest 80:759–767

    Article  PubMed  CAS  Google Scholar 

  205. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, Kugler D, Hieny S, Caspar P, Nunez G, Schlueter D, Flavell RA, Sutterwala FS, Sher A (2010) Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184:3326–3330

    Article  PubMed  CAS  Google Scholar 

  206. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VF (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189

    PubMed  CAS  Google Scholar 

  207. North RJ (1998) Mice incapable of making IL-4 or IL-10 display normal resistance to infection with Mycobacterium tuberculosis. Clin Exp Immunol 113:55–58

    Article  PubMed  CAS  Google Scholar 

  208. Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SH (1997) Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun 65:4843–4849

    PubMed  CAS  Google Scholar 

  209. Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM (2002) Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 168:1322–1327

    PubMed  CAS  Google Scholar 

  210. Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G (2010) Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 184:4414–4422

    Article  PubMed  CAS  Google Scholar 

  211. Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S (1999) Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 67:2585–2589

    PubMed  CAS  Google Scholar 

  212. Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J, Kaufmann SH, Mittrucker HW, Schaible UE (2010) A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur J Immunol 40:396–405

    Article  PubMed  CAS  Google Scholar 

  213. Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM, Ghilardi N, deSauvage F, Cooper AM (2005) IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 175:788–795

    PubMed  CAS  Google Scholar 

  214. Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, Mak T, Saris C, Ehlers S (2005) The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 174:3534–3544

    PubMed  Google Scholar 

  215. Saunders BM, Frank AA, Orme IM (1999) Granuloma formation is required to contain bacillus growth and delay mortality in mice chronically infected with Mycobacterium tuberculosis. Immunology 98:324–328

    Article  PubMed  CAS  Google Scholar 

  216. Johnson CM, Cooper AM, Frank AA, Orme IM (1998) Adequate expression of protective immunity in the absence of granuloma formation in Mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect Immun 66:1666–1670

    PubMed  CAS  Google Scholar 

  217. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608

    Article  PubMed  CAS  Google Scholar 

  218. Verbon A, Leemans JC, Weijer S, Florquin S, Van Der Poll T (2002) Mice lacking the multidrug resistance protein 1 have a transiently impaired immune response during tuberculosis. Clin Exp Immunol 130:32–36

    Article  PubMed  CAS  Google Scholar 

  219. Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003a) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47:327–336

    PubMed  CAS  Google Scholar 

  220. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A (2004) MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 72:2400–2404

    Article  PubMed  CAS  Google Scholar 

  221. Walter K, Holscher C, Tschopp J, Ehlers S (2010) NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology 215:804–811

    Article  PubMed  CAS  Google Scholar 

  222. North RJ, LaCourse R, Ryan L, Gros P (1999) Consequence of Nramp1 deletion to Mycobacterium tuberculosis infection in mice. Infect Immun 67:5811–5814

    PubMed  CAS  Google Scholar 

  223. Yamada H, Mizuno S, Reza-Gholizadeh M, Sugawara I (2001) Relative importance of NF-kappaB p50 in mycobacterial infection. Infect Immun 69:7100–7105

    Article  PubMed  CAS  Google Scholar 

  224. Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F, Kobayashi KS, Flavell RA, Gros P, Behr MA (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181:7157–7165

    PubMed  CAS  Google Scholar 

  225. Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistance to pulmonary tuberculosis in p47(phox-/-) mice. Infect Immun 68:1231–1234

    Article  PubMed  CAS  Google Scholar 

  226. Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, Porcelli SA, Almo SC, Nathenson SG, Jacobs WR Jr (2010) Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A 107:13402–13407

    Article  PubMed  CAS  Google Scholar 

  227. Sugawara I, Yamada H, Mizuno S (2004) STAT1 knockout mice are highly susceptible to pulmonary mycobacterial infection. Tohoku J Exp Med 202:41–50

    Article  PubMed  CAS  Google Scholar 

  228. Lemos MP, McKinney J, Rhee KY (2011) Dispensability of surfactant proteins A and D in immune control of Mycobacterium tuberculosis infection following aerosol challenge of mice. Infect Immun 79:1077–1085

    Article  PubMed  CAS  Google Scholar 

  229. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193:271–280

    Article  PubMed  CAS  Google Scholar 

  230. Ladel CH, Blum C, Dreher A, Reifenberg K, Kaufmann SH (1995) Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis. Eur J Immunol 25:2877–2881

    Article  PubMed  CAS  Google Scholar 

  231. Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003b) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47:327–336

    PubMed  CAS  Google Scholar 

  232. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A (2005a) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724

    Article  PubMed  CAS  Google Scholar 

  233. Holscher C, Reiling N, Schaible UE, Holscher A, Bathmann C, Korbel D, Lenz I, Sonntag T, Kroger S, Akira S, Mossmann H, Kirschning CJ, Wagner H, Freudenberg M, Ehlers S (2008) Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694

    Article  PubMed  CAS  Google Scholar 

  234. Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der Poll T (2004) Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol 16:509–516

    Article  PubMed  CAS  Google Scholar 

  235. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189:1973–1980

    Article  PubMed  CAS  Google Scholar 

  236. Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgwick JD, Britton WJ (1999) Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162:3504–3511

    PubMed  CAS  Google Scholar 

  237. Jacobs M, Brown N, Allie N, Chetty K, Ryffel B (2000) Tumor necrosis factor receptor 2 plays a minor role for mycobacterial immunity. Pathobiology 68:68–75

    Article  PubMed  CAS  Google Scholar 

  238. Bafica A, Scanga CA, Serhan C, Machado F, White S, Sher A, Aliberti J (2005b) Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J Clin Invest 115:1601–1606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salem, S., Gros, P. (2013). Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_3

Download citation

Publish with us

Policies and ethics