Skip to main content

Mechanisms of Immune Protection to Pneumococcal Infection in the Young and the Elderly

  • Chapter
  • First Online:
Immunosenescence

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Streptococcus pneumoniae remains a common cause of both non-invasive and invasive infection with high morbidity and mortality. The very young and the elderly are a particular risk of pneumococcal disease. There is considerable variation in virulence between different pneumococcal strains with some strains usually restricted to local infection at mucosal surfaces and other strains frequently causing invasive pneumococcal disease with the associated high morbidity and mortality. Age-dependent differences in the dominant disease-causing strains suggest that mechanisms of host protection against pneumococcal infection vary with age. In this review, we describe the spectrum of both invasive and non-invasive pneumococcal disease and the mechanisms of immunity to pneumococcal infection in the young and the aged. We focus on identifying age-specific risk factors for pneumococcal infection and age-dependent changes in the quality of immune defence against pneumococcus. Finally, we discuss serotype-specific virulence determinants of pneumococcus that may contribute to the patterns of colonisation and invasive pneumococcal disease in the young and the elderly as well as current and future approaches to immunisation for protection against pneumococcal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sternberg GM (1896) Pasteur. Science 3:185–189

    PubMed  CAS  Google Scholar 

  2. Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630

    PubMed  Google Scholar 

  3. Usen S, Adegbola R, Mulholland K, Jaffar S, Hilton S, Oparaugo A et al (1998) Epidemiology of invasive pneumococcal disease in the Western Region, The Gambia. Pediatr Infect Dis J 17:23–28

    PubMed  CAS  Google Scholar 

  4. Karstaedt AS, Khoosal M, Crewe-Brown HH (2001) Pneumococcal bacteremia in adults in Soweto, South Africa, during the course of a decade. Clin Infect Dis 33:610–614

    PubMed  CAS  Google Scholar 

  5. O’Brien KL, Wolfson LJ, Watt JP, Henkle E et al (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:893–902

    PubMed  Google Scholar 

  6. Hausdorff WP, Feikin DR, Klugman KP (2005) Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 5:83–93

    PubMed  Google Scholar 

  7. Melegaro A, Edmunds WJ, Pebody R, Miller E, George R (2006) The current burden of pneumococcal disease in England and Wales. J Infect 52:37–48

    PubMed  CAS  Google Scholar 

  8. Morrow A, De Wals P, Petit G, Guay M, Erickson LJ (2007) The burden of pneumococcal disease in the Canadian population before routine use of the seven-valent pneumococcal conjugate vaccine. Can J Infect Dis Med Microbiol 18:121–127

    PubMed  Google Scholar 

  9. Gray BM, Turner ME, Dillon HC Jr (1982) Epidemiologic studies of Streptococcus pneumoniae in infants. The effects of season and age on pneumococcal acquisition and carriage in the first 24 months of life. Am J Epidemiol 116:692–703

    PubMed  CAS  Google Scholar 

  10. Gupta RK, George R, Nguyen-Van-Tam JS (2008) Bacterial pneumonia and pandemic influenza planning. Emerg Infect Dis 14:1187–1192

    PubMed  Google Scholar 

  11. McNamee LA, Harmsen AG (2006) Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect Immun 74:6707–6721

    PubMed  CAS  Google Scholar 

  12. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG (2009) Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus Pneumoniae. Am J Respir Cell Mol Biol 42:450–460

    PubMed  Google Scholar 

  13. Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119:1899–1909

    PubMed  CAS  Google Scholar 

  14. Restrepo MI, Jorgensen JH, Mortensen EM, Anzueto A (2001) Severe community-acquired pneumonia: current outcomes, epidemiology, etiology, and therapy. Curr Opin Infect Dis 14:703–709

    PubMed  CAS  Google Scholar 

  15. Ioachimescu OC, Ioachimescu AG, Iannini PB (2004) Severity scoring in community-acquired pneumonia caused by Streptococcus pneumoniae: a 5-year experience. Int J Antimicrob Agents 24:485–490

    PubMed  CAS  Google Scholar 

  16. Leach AJ, Boswell JB, Asche V, Nienhuys TG, Mathews JD (1994) Bacterial colonization of the nasopharynx predicts very early onset and persistence of otitis media in Australian aboriginal infants. Pediatr Infect Dis J 13:983–989

    PubMed  CAS  Google Scholar 

  17. Kononen E, Jousimies-Somer H, Bryk A, Kilp T, Kilian M (2002) Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age. J Med Microbiol 51:723–730

    PubMed  CAS  Google Scholar 

  18. Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JA (2008) The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J 27:59–64

    PubMed  Google Scholar 

  19. Leach AJ, Morris PS (2007) The burden and outcome of respiratory tract infection in Australian and aboriginal children. Pediatr Infect Dis J 26:S4–S7

    PubMed  Google Scholar 

  20. Lounsbery MG, Bubak ME (2009) The impact of secondhand smoke on children: respiratory and other medical concerns. S D Med Spec No:13–16

    Google Scholar 

  21. Hendley JO, Sande MA, Stewart PM, Gwaltney JM Jr (1975) Spread of Streptococcus pneumoniae in families. I. Carriage rates and distribution of types. J Infect Dis 132:55–61

    PubMed  CAS  Google Scholar 

  22. Hogberg L, Geli P, Ringberg H, Melander E, Lipsitch M, Ekdahl K (2007) Age- and serogroup-related differences in observed durations of nasopharyngeal carriage of penicillin-resistant pneumococci. J Clin Microbiol 45:948–952

    PubMed  Google Scholar 

  23. Sleeman KL, Griffiths D, Shackley F, Diggle L, Gupta S, Maiden MC et al (2006) Capsular serotype-specific attack rates and duration of carriage of Streptococcus pneumoniae in a population of children. J Infect Dis 194:682–688

    PubMed  Google Scholar 

  24. Gray BM, Converse GM, Dillon-HC J (1980) Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis 142:923–933

    PubMed  CAS  Google Scholar 

  25. Almirall J, Bolibar I, Vidal J, Sauca G, Coll P, Niklasson B et al (2000) Epidemiology of community-acquired pneumonia in adults: a population-based study. Eur Respir J 15:757–763

    PubMed  CAS  Google Scholar 

  26. Chong CP, Street PR (2008) Pneumonia in the elderly: a review of the epidemiology, pathogenesis, microbiology, and clinical features. South Med J 101:1141–1145

    PubMed  Google Scholar 

  27. Loeb M (2004) Pneumonia in the elderly. Curr Opin Infect Dis 17:127–130

    PubMed  Google Scholar 

  28. Patel IS, Seemungal TA, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA (2002) Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57:759–764

    PubMed  CAS  Google Scholar 

  29. Lin YS, Lin LC, Lee FP, Lee KJ (2009) The prevalence of chronic otitis media and its complication rates in teenagers and adult patients. Otolaryngol Head Neck Surg 140:165–170

    PubMed  Google Scholar 

  30. Teele DW, Klein JO, Rosner BA (1980) Epidemiology of otitis media in children. Ann Otol Rhinol Laryngol Suppl 89:5–6

    PubMed  CAS  Google Scholar 

  31. Bluestone CD, Stephenson JS, Martin LM (1992) Ten-year review of otitis media pathogens. Pediatr Infect Dis J 11:S7–S11

    PubMed  CAS  Google Scholar 

  32. Daly KA, Rovers MM, Hoffman HJ, Uhari M, Casselbrant ML, Zielhuis G et al (2005) Recent advances in otitis media. 1. Epidemiology, natural history, and risk factors. Ann Otol Rhinol Laryngol Suppl 194:8–15

    PubMed  Google Scholar 

  33. Hausdorff WP, Yothers G, Dagan R, Kilpi T, Pelton SI, Cohen R et al (2002) Multinational study of pneumococcal serotypes causing acute otitis media in children. Pediatr Infect Dis J 21:1008–1016

    PubMed  Google Scholar 

  34. Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM (2004) Otitis media. Lancet 363:465–473

    PubMed  Google Scholar 

  35. Verhoeff M, van der Veen EL, Rovers MM, Sanders EA, Schilder AG (2006) Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol 70:1–12

    PubMed  Google Scholar 

  36. Lasisi AO, Olayemi O, Irabor AE (2008) Early onset otitis media: risk factors and effects on the outcome of chronic suppurative otitis media. Eur Arch Otorhinolaryngol 265:765–768

    PubMed  Google Scholar 

  37. Leibovitz E (2008) Complicated otitis media and its implications. Vaccine 26(Suppl 7):G16–G19

    PubMed  Google Scholar 

  38. Kangsanarak J, Fooanant S, Ruckphaopunt K, Navacharoen N, Teotrakul S (1993) Extracranial and intracranial complications of suppurative otitis media. Report of 102 cases. J Laryngol Otol 107:999–1004

    PubMed  CAS  Google Scholar 

  39. Agency for Healthcare Policy and Research (1999) Diagnosis and treatment of acute bacterial rhinosinusitis. Publication No. 99-E016. AHCPR Publications Clearinghouse, Silver Spring, MD

    Google Scholar 

  40. Anon JB, Jacobs MR, Poole MD, Ambrose PG, Benninger MS, Hadley JA et al (2004) Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 130:1–45

    PubMed  Google Scholar 

  41. Lanza DC, Kennedy DW (1997) Adult rhinosinusitis defined. Otolaryngol Head Neck Surg 117:S1–S7

    PubMed  CAS  Google Scholar 

  42. Lai L, Hopp RJ, Lusk RP (2006) Pediatric chronic sinusitis and asthma: a review. J Asthma 43:719–725

    PubMed  Google Scholar 

  43. Banerji A, Piccirillo JF, Thawley SE, Levitt RG, Schechtman KB, Kramper MA et al (2007) Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. Am J Rhinol 21:19–26

    PubMed  Google Scholar 

  44. Vlastos I, Athanasopoulos I, Mastronikolis NS, Panogeorgou T, Margaritis V, Naxakis S et al (2009) Impaired mucociliary clearance in allergic rhinitis patients is related to a predisposition to rhinosinusitis. Ear Nose Throat J 88:E17–E19

    PubMed  Google Scholar 

  45. Baroody FM (2007) Mucociliary transport in chronic rhinosinusitis. Clin Allergy Immunol 20:103–119

    PubMed  Google Scholar 

  46. Balk EM, Zucker DR, Engels EA, Wong JB, Williams JW Jr, Lau J (2001) Strategies for diagnosing and treating suspected acute bacterial sinusitis: a cost-effectiveness analysis. J Gen Intern Med 16:701–711

    PubMed  CAS  Google Scholar 

  47. Gwaltney JM Jr (1996) Acute community-acquired sinusitis. Clin Infect Dis 23:1209–1223

    PubMed  Google Scholar 

  48. Giannoni CM, Stewart MG, Alford EL (1997) Intracranial complications of sinusitis. Laryngoscope 107:863–867

    PubMed  CAS  Google Scholar 

  49. Macfarlane J, Holmes W, Gard P, Macfarlane R, Rose D, Weston V et al (2001) Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 56:109–114

    PubMed  CAS  Google Scholar 

  50. Almirall J, Bolibar I, Serra-Prat M, Roig J, Hospital I, Carandell E et al (2008) New evidence of risk factors for community-acquired pneumonia: a population-based study. Eur Respir J 31:1274–1284

    PubMed  CAS  Google Scholar 

  51. Lange P, Parner J, Prescott E, Vestbo J (2003) Chronic bronchitis in an elderly population. Age Ageing 32:636–642

    PubMed  Google Scholar 

  52. Lange P, Groth S, Nyboe J, Appleyard M, Mortensen J, Jensen G et al (1989) Chronic obstructive lung disease in Copenhagen: cross-sectional epidemiological aspects. J Intern Med 226:25–32

    PubMed  CAS  Google Scholar 

  53. Vestbo J (2004) Chronic bronchitis: should it worry us? Chron Respir Dis 1:173–176

    PubMed  CAS  Google Scholar 

  54. Holinger LD, Sanders AD (1991) Chronic cough in infants and children: an update. Laryngoscope 101:596–605

    PubMed  CAS  Google Scholar 

  55. Irwin RS, Madison JM (2000) The diagnosis and treatment of cough. N Engl J Med 343:1715–1721

    PubMed  CAS  Google Scholar 

  56. Donnelly D, Critchlow A, Everard ML (2007) Outcomes in children treated for persistent bacterial bronchitis. Thorax 62:80–84

    PubMed  Google Scholar 

  57. Robinson KA, Baughman W, Rothrock G, Barrett NL, Pass M, Lexau C et al (2001) Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA 285:1729–1735

    PubMed  CAS  Google Scholar 

  58. Sleeman K, Knox K, George R, Miller E, Waight P, Griffiths D et al (2001) Invasive pneumococcal disease in England and Wales: vaccination implications. J Infect Dis 183:239–246

    PubMed  CAS  Google Scholar 

  59. Cortese MM, Wolff M, Almeido-Hill J, Reid R, Ketcham J, Santosham M (1992) High incidence rates of invasive pneumococcal disease in the White Mountain Apache population. Arch Intern Med 152:2277–2282

    PubMed  CAS  Google Scholar 

  60. Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR et al (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group [see comments]. Pediatr Infect Dis J 19:187–195

    PubMed  CAS  Google Scholar 

  61. Ruckinger S, Reinert RR, Von KR, Burckhardt F, Seidler A (2009) Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany. Vaccine 27:4136–4141

    PubMed  Google Scholar 

  62. Lucero MG, Dulalia VE, Nillos LT, Williams G, Parreno RA, Nohynek H et al (2009) Pneumococcal conjugate vaccines for preventing vaccine-type invasive pneumococcal disease and X-ray defined pneumonia in children less than two years of age. Cochrane Database Syst Rev CD004977

    Google Scholar 

  63. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS et al (2007) Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis 196:1346–1354

    PubMed  Google Scholar 

  64. Hanage WP (2008) Serotype-specific problems associated with pneumococcal conjugate vaccination. Future Microbiol 3:23–30

    PubMed  Google Scholar 

  65. Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L et al (2009) Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med 6:e1000081

    PubMed  Google Scholar 

  66. Lynch JP III, Zhanel GG (2009) Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med 30:189–209

    PubMed  Google Scholar 

  67. Lexau CA, Lynfield R, Danila R, Pilishvili T, Facklam R, Farley MM et al (2005) Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA 294:2043–2051

    PubMed  CAS  Google Scholar 

  68. Jokinen C, Heiskanen L, Juvonen H, Kallinen S, Karkola K, Korppi M et al (1993) Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 137:977–988

    PubMed  CAS  Google Scholar 

  69. (2006) Managing empyema in adults. DTB 44:17–21

    Google Scholar 

  70. Hendrickson DJM, Blumberg DAM, Joad JPM, Jhawar SM, McDonald RJM (2008) Five-fold increase in pediatric parapneumonic empyema since introduction of pneumococcal conjugate vaccine [Report]. Pediatr Infect Dis J 27:1030–1032

    PubMed  Google Scholar 

  71. Bender JM, Ampofo K, Sheng X, Pavia AT, Cannon-Albright L, Byington CL (2009) Parapneumonic empyema deaths during past century, Utah. Emerg Infect Dis 15:44–48

    PubMed  Google Scholar 

  72. Eastham KM, Freeman R, Kearns AM, Eltringham G, Clark J, Leeming J et al (2004) Clinical features, aetiology and outcome of empyema in children in the north east of England. Thorax 59:522–525

    PubMed  CAS  Google Scholar 

  73. Shen YH, Hwang KP, Niu CK (2006) Complicated parapneumonic effusion and empyema in children. J Microbiol Immunol Infect 39:483–488

    PubMed  Google Scholar 

  74. Langley JM, Kellner JD, Solomon N, Robinson JL, Le SN, McDonald J et al (2008) Empyema associated with community-acquired pneumonia: a Pediatric Investigator’s Collaborative Network on Infections in Canada (PICNIC) study. BMC Infect Dis 8:129

    PubMed  Google Scholar 

  75. Ferguson AD, Prescott RJ, Selkon JB, Watson D, Swinburn CR (1996) The clinical course and management of thoracic empyema. Q J Med 89:285–290

    CAS  Google Scholar 

  76. Hoffman JA, Mason EO, Schutze GE, Tan TQ, Barson WJ, Givner LB et al (2003) Streptococcus pneumoniae infections in the neonate. Pediatrics 112:1095–1102

    PubMed  Google Scholar 

  77. Foster D, Knox K, Walker AS, Griffiths DT, Moore H, Haworth E et al (2008) Invasive pneumococcal disease: epidemiology in children and adults prior to implementation of the conjugate vaccine in the Oxfordshire region, England. J Med Microbiol 57:480–487

    PubMed  Google Scholar 

  78. Motlova J, Benes C, Kriz P (2009) Incidence of invasive pneumococcal disease in the Czech Republic and serotype coverage by vaccines, 1997–2006. Epidemiol Infect 137:562–569

    PubMed  CAS  Google Scholar 

  79. Johnson AP, Waight P, Andrews N, Pebody R, George RC, Miller E (2007) Morbidity and mortality of pneumococcal meningitis and serotypes of causative strains prior to introduction of the 7-valent conjugant pneumococcal vaccine in England. J Infect 55:394–9

    PubMed  Google Scholar 

  80. Weisfelt M, de Gans J, van der Poll T, van de Beek D (2006) Pneumococcal meningitis in adults: new approaches to management and prevention. Lancet Neurol 5:332–342

    PubMed  CAS  Google Scholar 

  81. Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2:721–736

    PubMed  Google Scholar 

  82. Johnson AP, Waight P, Andrews N, Pebody R, George RC, Miller E (2007) Morbidity and mortality of pneumococcal meningitis and serotypes of causative strains prior to introduction of the 7-valent conjugant pneumococcal vaccine in England. J Infect 55:394–9

    PubMed  Google Scholar 

  83. Weisfelt M, de Van BD, Spanjaard L, Reitsma JB, de GJ (2006) Clinical features, complications, and outcome in adults with pneumococcal meningitis: a prospective case series. Lancet Neurol 5:123–129

    PubMed  Google Scholar 

  84. Kastenbauer S, Pfister HW (2003) Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain 126:1015–1025

    PubMed  Google Scholar 

  85. Johnson AP, Waight P, Andrews N, Pebody R, George RC, Miller E (2007) Morbidity and mortality of pneumococcal meningitis and serotypes of causative strains prior to introduction of the 7-valent conjugant pneumococcal vaccine in England. J Infect 55:394–9

    PubMed  Google Scholar 

  86. Tuomanen E (1996) Entry of pathogens into the central nervous system. FEMS Microbiol Rev 18:289–299

    PubMed  CAS  Google Scholar 

  87. Berry AM, Ogunniyi AD, Miller DC, Paton JC (1999) Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 67:981–985

    PubMed  CAS  Google Scholar 

  88. Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U et al (2008) Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis 198:1028–1036

    PubMed  CAS  Google Scholar 

  89. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI et al (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109:19–27

    PubMed  CAS  Google Scholar 

  90. Koedel U, Frankenberg T, Kirschnek S, Obermaier B, Häcker H, Paul R et al (2009) Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog 5:e1000461

    Google Scholar 

  91. Weber JR, Tuomanen EI (2007) Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol 184:45–52

    PubMed  CAS  Google Scholar 

  92. Weisfelt M, van de BD, Spanjaard L, Reitsma JB, de GJ (2006) Community-acquired bacterial meningitis in older people. J Am Geriatr Soc 54:1500–1507

    Google Scholar 

  93. Jansen AG, Rodenburg GD, Veenhoven RH, Spanjaard L et al (2009) Invasive pneumococcal disease among adults: associations among serotypes, disease characteristics, and outcome. Clin Infect Dis 49:e23–e29

    PubMed  Google Scholar 

  94. Ruckinger S, von KR, Siedler A, van der LM (2009) Association of serotype of Streptococcus pneumoniae with risk of severe and fatal outcome. Pediatr Infect Dis J 28:118–122

    Google Scholar 

  95. Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S et al (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352:39–47

    PubMed  CAS  Google Scholar 

  96. Kristof K, Kocsis E, Nagy K (2009) Clinical microbiology of early-onset and late-onset neonatal sepsis, particularly among preterm babies. Acta Microbiol Immunol Hung 56:21–51

    PubMed  Google Scholar 

  97. Maayan-Metzger A, Barzilai A, Keller N, Kuint J (2009) Are the “good old” antibiotics still appropriate for early-onset neonatal sepsis? A 10 year survey. Isr Med Assoc J 11:138–142

    PubMed  Google Scholar 

  98. Hausdorff WP, Siber G, Paradiso PR (2001) Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet 357:950–952

    PubMed  CAS  Google Scholar 

  99. Plouffe JF, Breiman RF, Facklam RR (1996) Bacteremia with Streptococcus pneumoniae. Implications for therapy and prevention. Franklin County Pneumonia Study Group. JAMA 275:194–198

    PubMed  CAS  Google Scholar 

  100. Gransden WR, Eykyn SJ, Phillips I (1994) Septicaemia in the newborn and elderly. J Antimicrob Chemother 34:101–119

    PubMed  Google Scholar 

  101. O’Brien KL, Moulton LH, Reid R, Weatherholtz R, Oski J, Brown L et al (2003) Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet 362:355–361

    PubMed  Google Scholar 

  102. Bruce MG, Deeks SL, Zulz T, Bruden D, Navarro C, Lovgren M et al (2008) International Circumpolar Surveillance System for invasive pneumococcal disease, 1999–2005. Emerg Infect Dis 14:25–33

    PubMed  Google Scholar 

  103. Brent AJ, Ahmed I, Ndiritu M, Lewa P, Ngetsa C, Lowe B et al (2006) Incidence of clinically significant bacteraemia in children who present to hospital in Kenya: community-based observational study. Lancet 367:482–488

    PubMed  CAS  Google Scholar 

  104. Myers C, Gervaix A (2007) Streptococcus pneumoniae bacteraemia in children. Int J Antimicrob Agents 30:24–28

    Google Scholar 

  105. Millar EV, O’Brien KL, Watt JP, Bronsdon MA, Dallas J, Whitney CG et al (2006) Effect of community-wide conjugate pneumococcal vaccine use in infancy on nasopharyngeal carriage through 3 years of age: a cross-sectional study in a high-risk population. Clin Infect Dis 43:8–15

    PubMed  Google Scholar 

  106. Hanage WP, Huang SS, Lipsitch M, Bishop CJ, Godoy D, Pelton SI et al (2007) Diversity and antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae carriage isolates in the post-heptavalent conjugate vaccine era. J Infect Dis 195:347–352

    PubMed  Google Scholar 

  107. Totapally BR, Walsh WT (1998) Pneumococcal bacteremia in childhood. Chest 113:1207–1214

    PubMed  CAS  Google Scholar 

  108. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG (2003) Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis 187:1424–1432

    PubMed  CAS  Google Scholar 

  109. Brueggemann AB, Peto TE, Crook DW, Butler JC, Kristinsson KG, Spratt BG (2004) Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in children. J Infect Dis 190:1203–1211

    PubMed  Google Scholar 

  110. de LC (1950) “Healing” of an infant with pneumococcus-meningitis. Ann Paediatr 175:235–250

    Google Scholar 

  111. Paley SS (1950) Combined penicillin and sulfonamide therapy in pneumococcus meningitis; a report of 31 cases. Harlem Hosp Bull 2:174–178

    PubMed  CAS  Google Scholar 

  112. Appelbaum PC, Bhamjee A, Scragg JN, Hallett AF, Bowen AJ, Cooper RC (1977) Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet 2:995–997

    PubMed  CAS  Google Scholar 

  113. Cooper RG, Rischbieth HG, Vesey B (1968) An erythromycin-resistant pneumococcus. Med J Aust 1:1131

    PubMed  CAS  Google Scholar 

  114. Reinert RR (2009) The antimicrobial resistance profile of Streptococcus pneumoniae. Clin Microbiol Infect 15(Suppl 3):7–11

    PubMed  CAS  Google Scholar 

  115. Felmingham D, Canton R, Jenkins SG (2007) Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 55:111–118

    PubMed  Google Scholar 

  116. Siira L, Rantala M, Jalava J, Hakanen AJ, Huovinen P, Kaijalainen T et al (2009) Temporal trends of antimicrobial resistance and clonality of invasive Streptococcus pneumoniae isolates in Finland, 2002 to 2006. Antimicrob Agents Chemother 53:2066–2073

    PubMed  CAS  Google Scholar 

  117. Dias R, Canica M (2008) Trends in resistance to penicillin and erythromycin of invasive pneumococci in Portugal. Epidemiol Infect 136:928–939

    PubMed  CAS  Google Scholar 

  118. Arason VA, Kristinsson KG, Sigurdsson JA, Stefansdottir G, Molstad S, Gudmundsson S (1996) Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children? Cross sectional prevalence study. BMJ 313:387–391

    PubMed  CAS  Google Scholar 

  119. Macgowan AP (2008) Clinical implications of antimicrobial resistance for therapy. J Antimicrob Chemother 62(suppl 2):ii105–ii114

    Google Scholar 

  120. Falagas ME, Siempos II, Bliziotis IA, Panos GZ (2006) Impact of initial discordant treatment with beta-lactam antibiotics on clinical outcomes in adults with pneumococcal pneumonia: a systematic review. Mayo Clin Proc 81:1567–1574

    PubMed  CAS  Google Scholar 

  121. Kemaloglu YK (1999) Craniofacial anatomy and otitis media. Am J Otol 20:556–558

    PubMed  CAS  Google Scholar 

  122. Motomura K, Masaki H, Terada M, Onizuka T, Furumoto A, Asoh N et al (2005) Usefulness of the Japanese Respiratory Society guidelines for community pneumonia: a retrospective analysis of community-acquired pneumonia between 2000 and 2002 in a general hospital. Respirology 10:208–214

    PubMed  Google Scholar 

  123. McArthur MS (1986) Pulmonary complications of benign esophageal disease. Am J Surg 151:296–299

    PubMed  CAS  Google Scholar 

  124. Mehta H, Nazzal K, Sadikot RT (2008) Cigarette smoking and innate immunity. Inflamm Res 57:497–503

    PubMed  CAS  Google Scholar 

  125. Tamashiro E, Xiong G, Nselmo-Lima WT, Kreindler JL, Palmer JN, Cohen NA (2009) Cigarette smoke exposure impairs respiratory epithelial ciliogenesis. Am J Rhinol Allergy 23:117–122

    Google Scholar 

  126. Bogaert D, De GR, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154

    PubMed  CAS  Google Scholar 

  127. Bogaert D, Weinberger D, Thompson C, Lipsitch M, Malley R (2009) Impaired innate and adaptive immunity to Streptococcus pneumoniae and its effect on colonization in an infant mouse model. Infect Immun 77:1613–1622

    PubMed  CAS  Google Scholar 

  128. Kanapuru B, Ershler WB (2009) Inflammation, coagulation, and the pathway to frailty. Am J Med 122:605–613

    PubMed  CAS  Google Scholar 

  129. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19:571–582

    PubMed  CAS  Google Scholar 

  130. Brouwer MC, de GJ, Heckenberg SG, Zwinderman AH, Van der AH, Van de BD (2009) Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 9:31–44

    PubMed  CAS  Google Scholar 

  131. Murdoch DR, Jennings LC (2009) Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease. J Infect 58:37–46

    PubMed  Google Scholar 

  132. Kuroki Y, Takahashi M, Nishitani C (2007) Pulmonary collectins in innate immunity of the lung. Cell Microbiol 9:1871–1879

    PubMed  CAS  Google Scholar 

  133. Ho JC, Chan KN, Hu WH, Lam WK, Zheng L, Tipoe GL et al (2001) The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med 163:983–988

    PubMed  CAS  Google Scholar 

  134. Raz E (2007) Organ-specific regulation of innate immunity. Nat Immunol 8:3–4

    PubMed  CAS  Google Scholar 

  135. Ku CL, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A et al (2007) IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet 44:16–23

    PubMed  CAS  Google Scholar 

  136. Lipsitch M, Whitney CG, Zell E, Kaijalainen T, Dagan R, Malley R (2005) Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease? PLoS Med 2:e15

    PubMed  Google Scholar 

  137. Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC (2000) Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 68:3028–3033

    PubMed  CAS  Google Scholar 

  138. Briles DE, Ades E, Paton JC, Sampson JS, Carlone GM, Huebner RC et al (2000) Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 68:796–800

    PubMed  CAS  Google Scholar 

  139. Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC (2007) Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 75:350–357

    PubMed  CAS  Google Scholar 

  140. Xin W, Li Y, Mo H, Roland KL, Curtiss R III (2009) PspA family fusion proteins delivered by attenuated Salmonella enterica serovar Typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect Immun 77:4518–4528

    PubMed  CAS  Google Scholar 

  141. Ridda I, Macintyre CR, Lindley R, Gao Z, Sullivan JS, Yuan FF et al (2009) Immunological responses to pneumococcal vaccine in frail older people. Vaccine 27:1628–1636

    PubMed  CAS  Google Scholar 

  142. Cancro MP, Allman DM (2005) Connecting the dots: revealing the interactions of lymphocyte development and homeostasis in the immunobiology of aging. Semin Immunol 17:319–320

    PubMed  Google Scholar 

  143. Raymond T, Schaller M, Hogaboam CM, Lukacs NW, Rochford R, Kunkel SL (2007) Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lung inflammation. Proc Am Thorac Soc 4:635–641

    PubMed  CAS  Google Scholar 

  144. Emanuelli G, Lanzio M, Anfossi T, Romano S, Anfossi G, Calcamuggi G (1986) Influence of age on polymorphonuclear leukocytes in vitro: phagocytic activity in healthy human subjects. Gerontology 32:308–316

    PubMed  CAS  Google Scholar 

  145. Nagel JE, Pyle RS, Chrest FJ, Adler WH (1982) Oxidative metabolism and bactericidal capacity of polymorphonuclear leukocytes from normal young and aged adults. J Gerontol 37:529–534

    PubMed  CAS  Google Scholar 

  146. Bruce IN, McNally JA, Rea IM, Bell AL (1997) Age-related changes in non-receptor dependent generation of reactive oxygen species from phagocytes of healthy adults. Mech Ageing Dev 94:135–144

    PubMed  CAS  Google Scholar 

  147. Suzuki K, Swenson C, Sasagawa S, Sakatani T, Watanabe M, Kobayashi M et al (1983) Age-related decline in lysosomal enzyme release from polymorphonuclear leukocytes after N-formyl-methionyl-leucyl-phenylalanine stimulation. Exp Hematol 11:1005–1013

    PubMed  CAS  Google Scholar 

  148. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E et al (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886

    PubMed  CAS  Google Scholar 

  149. Liang S, Domon H, Hosur KB, Wang M, Hajishengallis G (2009) Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro. Mech Ageing Dev 130:538–546

    PubMed  CAS  Google Scholar 

  150. Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    PubMed  CAS  Google Scholar 

  151. Mold C, Rodic-Polic B, Du Clos TW (2002) Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J Immunol 168:6375–6381

    PubMed  CAS  Google Scholar 

  152. Yuste J, Botto M, Bottoms SE, Brown JS (2007) Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog 3:1208–1219

    PubMed  CAS  Google Scholar 

  153. Jonsson G, Oxelius VA, Truedsson L, Braconier JH, Sturfelt G, Sjoholm AG (2006) Homozygosity for the IgG2 subclass allotype G2M(n) protects against severe infection in hereditary C2 deficiency. J Immunol 177:722–728

    PubMed  Google Scholar 

  154. Davis CA, Vallota EH, Forristal J (1979) Serum complement levels in infancy: age related changes. Pediatr Res 13:1043–1046

    PubMed  CAS  Google Scholar 

  155. Malm J, Bennhagen R, Holmberg L, Dahlback B (1988) Plasma concentrations of C4b-binding protein and vitamin K-dependent protein S in term and preterm infants: low levels of protein S-C4b-binding protein complexes. Br J Haematol 68:445–449

    PubMed  CAS  Google Scholar 

  156. Lassiter HA, Watson SW, Seifring ML, Tanner JE (1992) Complement factor 9 deficiency in serum of human neonates. J Infect Dis 166:53–57

    PubMed  CAS  Google Scholar 

  157. Drossou V, Kanakoudi F, Diamanti E, Tzimouli V, Konstantinidis T, Germenis A et al (1995) Concentrations of main serum opsonins in early infancy. Arch Dis Child Fetal Neonatal Ed 72:F172–F175

    PubMed  CAS  Google Scholar 

  158. Milman N, Graudal N, Andersen HC (1988) Acute phase reactants in the elderly. Clin Chim Acta 176:59–62

    PubMed  CAS  Google Scholar 

  159. Caswell M, Pike LA, Bull BS, Stuart J (1993) Effect of patient age on tests of the acute-phase response. Arch Pathol Lab Med 117:906–910

    PubMed  CAS  Google Scholar 

  160. Gwaltney-JM J, Sande MA, Austrian R, Hendley JO (1975) Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody. J Infect Dis 132:62–68

    Google Scholar 

  161. Didierlaurent A, Goulding J, Hussell T (2007) The impact of successive infections on the lung microenvironment. Immunology 122:457–465

    PubMed  CAS  Google Scholar 

  162. von BH, Picard C, Jin Z, Pankla R, Xiao H, Ku CL et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696

    Google Scholar 

  163. Propst-Graham KL, Preheim LC, Vander Top EA, Snitily MU, Gentry-Nielsen MJ (2007) Cirrhosis-induced defects in innate pulmonary defenses against Streptococcus pneumoniae. BMC Microbiol 7:94

    Google Scholar 

  164. Molloy EJ, O’Neill AJ, Doyle BT, Grantham JJ, Taylor CT, Sheridan-Pereira M et al (2006) Effects of heat shock and hypoxia on neonatal neutrophil lipopolysaccharide responses: altered apoptosis, Toll-like receptor-4 and CD11b expression compared with adults. Biol Neonate 90:34–39

    PubMed  CAS  Google Scholar 

  165. Molloy EJ, O’Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW et al (2005) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor have differential effects on neonatal and adult neutrophil survival and function. Pediatr Res 57:806–812

    PubMed  CAS  Google Scholar 

  166. Nordenstam G, Andersson B, BENGTSSON C, Briles D, Scott G, Svanborg A et al (1989) Age-related change in anti-carbohydrate antibody levels. Am J Epidemiol 129:89–96

    Google Scholar 

  167. Simell B, Kilpi TM, Kayhty H (2002) Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal capsular polysaccharides in children. J Infect Dis 186:1106–1114

    PubMed  CAS  Google Scholar 

  168. Soininen A, Karpala M, Wahlman SL, Lehtonen H, Kayhty H (2002) Specificities and opsonophagocytic activities of antibodies to pneumococcal capsular polysaccharides in sera of unimmunized young children. Clin Diagn Lab Immunol 9:1032–1038

    PubMed  CAS  Google Scholar 

  169. Chudwin DS, Artrip SG, Korenblit A, Schiffman G, Rao S (1985) Correlation of serum opsonins with in vitro phagocytosis of Streptococcus pneumoniae. Infect Immun 50:213–217

    PubMed  CAS  Google Scholar 

  170. Mertens J, Fabri M, Zingarelli A, Kubacki T, Meemboor S, Groneck L et al (2009) Streptococcus pneumoniae serotype 1 capsular polysaccharide induces CD8CD28 regulatory T lymphocytes by TCR crosslinking. PLoS Pathog 5:e1000596

    PubMed  Google Scholar 

  171. Kolibab K, Smithson SL, Shriner AK, Khuder S, Romero-Steiner S, Carlone GM et al (2005) Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults. I. Antibody concentrations, avidity and functional activity. Immun Ageing 2:10

    PubMed  Google Scholar 

  172. Romero SS, Musher DM, Cetron MS, Pais LB, Groover JE, Fiore AE et al (1999) Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity [see comments]. Clin Infect Dis 29:281–288

    Google Scholar 

  173. Konradsen HB (1995) Quantity and avidity of pneumococcal antibodies before and up to five years after pneumococcal vaccination of elderly persons. Clin Infect Dis 21:616–620

    PubMed  CAS  Google Scholar 

  174. Banerjee M, Mehr R, Belelovsky A, Spencer J, Dunn-Walters DK (2002) Age- and tissue-specific differences in human germinal center B cell selection revealed by analysis of IgVH gene hypermutation and lineage trees. Eur J Immunol 32:1947–1957

    PubMed  CAS  Google Scholar 

  175. AlonsoDeVelasco E, Verheul AF, Verhoef J, Snippe H (1995) Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59:591–603

    PubMed  CAS  Google Scholar 

  176. Mond JJ, Lees A, Snapper CM (1995) T cell-independent antigens type 2. Annu Rev Immunol 13:655–692

    PubMed  CAS  Google Scholar 

  177. Sorensen UB, Henrichsen J, Chen HC, Szu SC (1990) Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb Pathog 8:325–334

    PubMed  CAS  Google Scholar 

  178. Khan AQ, Lees A, Snapper CM (2004) Differential regulation of IgG anti-capsular polysaccharide and antiprotein responses to intact Streptococcus pneumoniae in the presence of cognate CD4+ T cell help. J Immunol 172:532–539

    PubMed  CAS  Google Scholar 

  179. Groneck L, Schrama D, Fabri M, Stephen TL, Harms F, Meemboor S et al (2009) Oligoclonal CD4+ T cells promote host memory immune responses to Zwitterionic polysaccharide of Streptococcus pneumoniae. Infect Immun 77:3705–3712

    PubMed  CAS  Google Scholar 

  180. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    PubMed  CAS  Google Scholar 

  181. Fried AJ, Bonilla FA (2009) Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev 22:396–414

    PubMed  CAS  Google Scholar 

  182. Simell B, Lahdenkari M, Reunanen A, Kayhty H, Vakevainen M (2008) Effects of ageing and gender on naturally acquired antibodies to pneumococcal capsular polysaccharides and virulence-associated proteins. Clin Vaccine Immunol 15:1391–1397

    PubMed  CAS  Google Scholar 

  183. Snapper CM, Shen Y, Khan AQ, Colino J, Zelazowski P, Mond JJ et al (2001) Distinct types of T-cell help for the induction of a humoral immune response to Streptococcus pneumoniae. Trends Immunol 22:308–311

    PubMed  CAS  Google Scholar 

  184. Bullowa JG (1929) The serum treatment and its evaluation in lobar pneumonia. Bull NY Acad Med 5:328–362

    CAS  Google Scholar 

  185. Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, Lipsitch M (2008) Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J Infect Dis 197:1511–1518

    PubMed  Google Scholar 

  186. Allman D, Miller JP (2005) B cell development and receptor diversity during aging. Curr Opin Immunol 17:463–467

    PubMed  CAS  Google Scholar 

  187. Goldacker S, Draeger R, Warnatz K, Huzly D, Salzer U, Thiel J et al (2007) Active vaccination in patients with common variable immunodeficiency (CVID). Clin Immunol 124:294–303

    PubMed  CAS  Google Scholar 

  188. Wu ZQ, Shen Y, Khan AQ, Chu CL, Riese R, Chapman HA et al (2002) The mechanism underlying T cell help for induction of an antigen- specific in vivo humoral immune response to intact Streptococcus pneumoniae is dependent on the type of antigen. J Immunol 168:5551–5557

    PubMed  CAS  Google Scholar 

  189. Colino J, Shen Y, Snapper CM (2002) Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms. J Exp Med 195:1–13

    PubMed  CAS  Google Scholar 

  190. Bullowa JG (1935) Pneumonia due to pneumococcus Type XIV (Cooper) and its treatment with specific antiserum. J Clin Invest 14:373–383

    PubMed  CAS  Google Scholar 

  191. Alanee SR, McGee L, Jackson D, Chiou CC, Feldman C, Morris AJ et al (2007) Association of serotypes of Streptococcus pneumoniae with disease severity and outcome in adults: an international study. Clin Infect Dis 45:46–51

    PubMed  CAS  Google Scholar 

  192. Shouval DS, Greenberg D, Givon-Lavi N, Porat N, Dagan R (2006) Site-specific disease potential of individual Streptococcus pneumoniae serotypes in pediatric invasive disease, acute otitis media and acute conjunctivitis. Pediatr Infect Dis J 25:602–607

    PubMed  Google Scholar 

  193. Herva E, Luotonen J, Timonen M, Sibakov M, Karma P, Makela PH (1980) The effect of polyvalent pneumococcal polysaccharide vaccine on nasopharyngeal and nasal carriage of Streptococcus pneumoniae. Scand J Infect Dis 12:97–100

    PubMed  CAS  Google Scholar 

  194. Douglas RM, Hansman D, Miles HB, Paton JC (1986) Pneumococcal carriage and type-specific antibody. Failure of a 14- valent vaccine to reduce carriage in healthy children. Am J Dis Child 140:1183–1185

    PubMed  CAS  Google Scholar 

  195. Obaro SK, Adegbola RA, Banya WA, Greenwood BM (1996) Carriage of pneumococci after pneumococcal vaccination. Lancet 348:271–272

    PubMed  CAS  Google Scholar 

  196. Wright PF, Sell SH, Vaughn WK, Andrews C, McConnell KB, Schiffman G (1981) Clinical studies of pneumococcal vaccines in infants. II. Efficacy and effect on nasopharyngeal carriage. Rev Infect Dis 3(suppl):S108–S112

    Google Scholar 

  197. Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A et al (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325:1453–1460

    PubMed  CAS  Google Scholar 

  198. Jackson LA, Neuzil KM, Yu O, Benson P, Barlow WE, Adams AL et al (2003) Effectiveness of pneumococcal polysaccharide vaccine in older adults. N Engl J Med 348:1747–1755

    PubMed  CAS  Google Scholar 

  199. Engelhard D, Pomeranz S, Gallily R, Strauss N, Tuomanen E (1997) Serotype-related differences in inflammatory response to Streptococcus pneumoniae in experimental meningitis. J Infect Dis 175:979–982

    PubMed  CAS  Google Scholar 

  200. Schiffman G, Bornstein DL, Austrian R (1971) Capsulation of pneumococcus with soluble cell wall-like polysaccharide. II. Nonidentity of cell wall and soluble cell wall-like polysaccharides derived from the same and from different pneumococcal strains. J Exp Med 134:600–617

    Google Scholar 

  201. Henrichsen J (1995) Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 33:2759–2762

    PubMed  CAS  Google Scholar 

  202. Clapp DW (2006) Developmental regulation of the immune system. Semin Perinatol 30:69–72

    PubMed  Google Scholar 

  203. Sadeghi K, Berger A, Langgartner M, Prusa AR, Hayde M, Herkner K et al (2007) Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis 195:296–302

    PubMed  CAS  Google Scholar 

  204. Herrera MD, Mingorance C, Rodriguez-Rodriguez R, de Varez SM (2009) Endothelial dysfunction and aging: an update. Ageing Res Rev 9(2):142–52

    PubMed  Google Scholar 

  205. Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR (2009) Nuclear factor-{kappa}B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 119:1284–1292

    PubMed  CAS  Google Scholar 

  206. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J et al (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 116:219–230

    CAS  Google Scholar 

  207. Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR (2008) Aging is associated with greater nuclear NFkappaB, reduced IkappaBalpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell 7:805–812

    PubMed  CAS  Google Scholar 

  208. Goulding J, Snelgrove R, Saldana J, Didierlaurent A, Cavanagh M, Gwyer E et al (2007) Respiratory infections: do we ever recover? Proc Am Thorac Soc 4:618–625

    PubMed  CAS  Google Scholar 

  209. Wissinger E, Goulding J, Hussell T (2009) Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 21:147–155

    PubMed  CAS  Google Scholar 

  210. Johnson AP, Waight P, Andrews N, Pebody R, George RC, Miller E (2007) Morbidity and mortality of pneumococcal meningitis and serotypes of causative strains prior to introduction of the 7-valent conjugant pneumococcal vaccine in England. J Infect 55:394–399

    Google Scholar 

  211. Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333

    PubMed  CAS  Google Scholar 

  212. Schrodter S, Biermann E, Halata Z (2003) Histological evaluation of age-related changes in human respiratory mucosa of the middle turbinate. Anat Embryol (Berl) 207:19–27

    Google Scholar 

  213. Hussell T, Cavanagh MM (2009) The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia. Biochem Soc Trans 37:811–813

    PubMed  CAS  Google Scholar 

  214. Torday JS, Rehan VK (2007) The evolutionary continuum from lung development to homeostasis and repair. Am J Physiol Lung Cell Mol Physiol 292:L608–L611

    PubMed  CAS  Google Scholar 

  215. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    PubMed  CAS  Google Scholar 

  216. Ampofo K, Bender J, Sheng X, Korgenski K, Daly J, Pavia AT et al (2008) Seasonal invasive pneumococcal disease in children: role of preceding respiratory viral infection. Pediatrics 122:229–237

    PubMed  Google Scholar 

  217. Hussell T, Wissinger E, Goulding J (2009) Bacterial complications during pandemic influenza infection. Future Microbiol 4:269–272

    PubMed  Google Scholar 

  218. LeVine AM, Koeningsknecht V, Stark JM (2001) Decreased pulmonary clearance of S. pneumoniae following influenza A infection in mice. J Virol Methods 94:173–186

    PubMed  CAS  Google Scholar 

  219. Jansen AG, Sanders EA, Van der EA, Van Loon AM, Hoes AW, Hak E (2008) Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect 136:1448–1454

    PubMed  CAS  Google Scholar 

  220. Ilia S, Goulielmos GN, Samonis G, Galanakis E (2008) Host’s response in otitis media: understanding genetic susceptibility. Pediatr Infect Dis J 27:929–933

    PubMed  Google Scholar 

  221. Yuan FF, Marks K, Wong M, Watson S et al (2008) Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 86:268–270

    PubMed  CAS  Google Scholar 

  222. Cundell DR, Gerard NP, Gerard C, Idanpaan HI, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438

    PubMed  CAS  Google Scholar 

  223. Fillon S, Soulis K, Rajasekaran S, edict-Hamilton H, Radin JN, Orihuela CJ et al (2006) Platelet-activating factor receptor and innate immunity: uptake of gram-positive bacterial cell wall into host cells and cell-specific pathophysiology. J Immunol 177:6182–6191

    Google Scholar 

  224. Hinojosa E, Boyd AR, Orihuela CJ (2009) Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J Infect Dis 200:546–554

    PubMed  CAS  Google Scholar 

  225. Geelen S, Bhattacharyya C, Tuomanen E (1993) The cell wall mediates pneumococcal attachment to and cytopathology in human endothelial cells. Infect Immun 61:1538–1543

    PubMed  CAS  Google Scholar 

  226. Rubins JB, Duane PG, Charboneau D, Janoff EN (1992) Toxicity of pneumolysin to pulmonary endothelial cells in vitro. Infect Immun 60:1740–1746

    PubMed  CAS  Google Scholar 

  227. Kletsas D, Pratsinis H, Mariatos G, Zacharatos P, Gorgoulis VG (2004) The proinflammatory phenotype of senescent cells: the p53-mediated ICAM-1 expression. Ann NY Acad Sci 1019:330–332

    PubMed  CAS  Google Scholar 

  228. van Rossum AM, Lysenko ES, Weiser JN (2005) Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 73:7718–7726

    PubMed  Google Scholar 

  229. Bondada S, Wu H, Robertson DA, Chelvarajan RL (2000) Accessory cell defect in unresponsiveness of neonates and aged to polysaccharide vaccines. Vaccine 19:557–565

    PubMed  CAS  Google Scholar 

  230. Marriott HM, Dockrell DH (2007) The role of the macrophage in lung disease mediated by bacteria. Exp Lung Res 33:493–505

    PubMed  CAS  Google Scholar 

  231. Koppel EA, Litjens M, van den Berg VC, van Kooyk Y, Geijtenbeek TBH (2008) Interaction of SIGNR1 expressed by marginal zone macrophages with marginal zone B cells is essential to early IgM responses against Streptococcus pneumoniae. Mol Immunol 45:2881–2887

    PubMed  CAS  Google Scholar 

  232. Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S et al (2004) Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279:21421–21430

    PubMed  CAS  Google Scholar 

  233. Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K et al (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200:267–272

    PubMed  CAS  Google Scholar 

  234. Sano H, Kuronuma K, Kudo K, Mitsuzawa H, Sato M, Murakami S et al (2006) Regulation of inflammation and bacterial clearance by lung collectins. Respirology 11(Suppl):S46–S50

    PubMed  Google Scholar 

  235. Lanoue A, Clatworthy MR, Smith P, Green S, Townsend MJ, Jolin HE et al (2004) SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200:1383–1393

    PubMed  CAS  Google Scholar 

  236. Koppel EA, Wieland CW, van dB, Litjens M, Florquin S, van KY et al (2005) Specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) expressed by marginal zone macrophages is essential for defense against pulmonary Streptococcus pneumoniae infection. Eur J Immunol 35:2962–2969

    PubMed  CAS  Google Scholar 

  237. Ku CL, Yang K, Bustamante J, Puel A et al (2005) Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol Rev 203:10–20

    PubMed  CAS  Google Scholar 

  238. Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C et al (2005) The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73:6479–6487

    PubMed  CAS  Google Scholar 

  239. Picard C, von BH, Ku CL, Yang K, Puel A, Casanova JL (2007) Inherited human IRAK-4 deficiency: an update. Immunol Res 38:347–352

    PubMed  CAS  Google Scholar 

  240. Currie AJ, Davidson DJ, Reid GS, Bharya S, MacDonald KL, Devon RS et al (2004) Primary immunodeficiency to pneumococcal infection due to a defect in Toll-like receptor signaling. J Pediatr 144:512–518

    PubMed  CAS  Google Scholar 

  241. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ et al (2006) Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol 79:1314–1327

    PubMed  CAS  Google Scholar 

  242. Chelvarajan L, Popa D, Liu Y, Getchell TV, Stromberg AJ, Bondada S (2007) Molecular mechanisms underlying anti-inflammatory phenotype of neonatal splenic macrophages. J Leukoc Biol 82:403–416

    PubMed  CAS  Google Scholar 

  243. Chelvarajan RL, Collins SM, Doubinskaia IE, Goes S, Van WJ, Flanagan D et al (2004) Defective macrophage function in neonates and its impact on unresponsiveness of neonates to polysaccharide antigens. J Leukoc Biol 75:982–994

    PubMed  CAS  Google Scholar 

  244. Balistreri CR, Colonna-Romano G, Lio D, Candore G, Caruso C (2009) TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J Clin Immunol 29:406–415

    PubMed  CAS  Google Scholar 

  245. Valdez R, Narayan KM, Geiss LS, Engelgau MM (1999) Impact of diabetes mellitus on mortality associated with pneumonia and influenza among non-Hispanic black and white US adults. Am J Public Health 89:1715–1721

    PubMed  CAS  Google Scholar 

  246. Gordon DL, Johnson GM, Hostetter MK (1986) Ligand-receptor interactions in the phagocytosis of virulent Streptococcus pneumoniae by polymorphonuclear leukocytes. J Infect Dis 154:619–626

    PubMed  CAS  Google Scholar 

  247. Brown EJ, Hosea SW, Frank MM (1983) The role of antibody and complement in the reticuloendothelial clearance of pneumococci from the bloodstream. Rev Infect Dis 5(Suppl 4):S797–S805

    PubMed  Google Scholar 

  248. Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR et al (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci USA 99:16969–16974

    PubMed  CAS  Google Scholar 

  249. Yuste J, Sen A, Truedsson L, Jonsson G, Tay LS, Hyams C et al (2008) Impaired opsonisation with C3b and phagocytosis of Streptococcus pneumoniae in serum from subjects with defects in the classical complement pathway. Infect Immun 76(8):3761–3770

    Google Scholar 

  250. McEvoy LT, Zakem-Cloud H, Tosi MF (1996) Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood 87:3929–3933

    PubMed  CAS  Google Scholar 

  251. Abughali N, Berger M, Tosi MF (1994) Deficient total cell content of CR3 (CD11b) in neonatal neutrophils. Blood 83:1086–1092

    PubMed  CAS  Google Scholar 

  252. Storm SW, Mariscalco MM, Tosi MF (2008) Postnatal maturation of total cell content and up-regulated surface expression of Mac-1 (CD11b/CD18) in polymorphonuclear leukocytes of human infants. J Leukoc Biol 84:477–479

    PubMed  CAS  Google Scholar 

  253. Molloy EJ, O’Neill AJ, Grantham-Sloan JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW et al (2007) Neonatal encephalopathy is associated with altered perinatal systemic neutrophil apoptosis. Am J Perinatol 24:525–530

    PubMed  Google Scholar 

  254. Straetemans M, Wiertsema SP, Sanders EA, Rijkers GT, Graamans K et al (2005) Immunological status in the aetiology of recurrent otitis media with effusion: serum immunoglobulin levels, functional mannose-binding lectin and Fc receptor polymorphisms for IgG. J Clin Immunol 25:78–86

    PubMed  CAS  Google Scholar 

  255. Moens L, Van HE, Verhaegen J, De BK, Peetermans WE, Bossuyt X (2006) Fcgamma-receptor IIA genotype and invasive pneumococcal infection. Clin Immunol 118:20–23

    PubMed  CAS  Google Scholar 

  256. Wiertsema SP, Veenhoven RH, Walraven V, Uiterwaal CS, Schilder AG, Rijkers GT et al (2006) Pneumococcal vaccine efficacy for mucosal pneumococcal infections depends on Fcgamma receptor IIa polymorphism. Vaccine 24:792–797

    PubMed  CAS  Google Scholar 

  257. Antonaci S, Jirillo E, Ventura MT, Garofalo AR, Bonomo L (1984) Non-specific immunity in aging: deficiency of monocyte and polymorphonuclear cell-mediated functions. Mech Ageing Dev 24:367–375

    PubMed  CAS  Google Scholar 

  258. Biasi D, Carletto A, Dell’Agnola C, Caramaschi P, Montesanti F, Zavateri G et al (1996) Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation 20:673–681

    PubMed  CAS  Google Scholar 

  259. Nagel JE, Han K, Coon PJ, Adler WH, Bender BS (1986) Age differences in phagocytosis by polymorphonuclear leukocytes measured by flow cytometry. J Leukoc Biol 39:399–407

    PubMed  CAS  Google Scholar 

  260. Schroder AK, Rink L (2003) Neutrophil immunity of the elderly. Mech Ageing Dev 124:419–425

    PubMed  Google Scholar 

  261. Wenisch C, Patruta S, Daxbock F, Krause R, Horl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45

    PubMed  CAS  Google Scholar 

  262. Mege JL, Capo C, Michel B, Gastaut JL, Bongrand P (1988) Phagocytic cell function in aged subjects. Neurobiol Aging 9:217–220

    PubMed  CAS  Google Scholar 

  263. Goldblatt D, Hussain M, Andrews N, Ashton L, Virta C, Melegaro A et al (2005) Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. J Infect Dis 192:387–393

    PubMed  CAS  Google Scholar 

  264. Soininen A, Pursiainen H, Kilpi T, Kayhty H (2001) Natural development of antibodies to pneumococcal capsular polysaccharides depends on the serotype: association with pneumococcal carriage and acute otitis media in young children. J Infect Dis 184:569–576

    PubMed  CAS  Google Scholar 

  265. Rapola S, Jantti V, Haikala R, Syrjanen R, Carlone GM, Sampson JS et al (2000) Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J Infect Dis 182:1146–1152

    PubMed  CAS  Google Scholar 

  266. Zhang Q, Bagrade L, Bernatoniene J, Clarke E, Paton JC, Mitchell TJ et al (2007) Low CD4 T cell immunity to pneumolysin is associated with nasopharyngeal carriage of pneumococci in children. J Infect Dis 195:1194–1202

    PubMed  CAS  Google Scholar 

  267. Dochez AR (1912) The presence of protective substances in human serum during lobar pneumonia. J Exp Med 16:665

    Google Scholar 

  268. Robertson OH, Graeser JB, Coggeshall LT, Harrison MA (1934) The relation of circulating antipneumococcal immune substances to the course of lobar pneumonia 1. Natural immune substances. J Clin Invest 13:621–631

    PubMed  CAS  Google Scholar 

  269. Robertson OH, Graeser JB, Coggeshall LT, Harrison MA (1934) The relation of circulating antipneumococcal immune substances to the course of lobar pneumonia II. Acquired Immune Substances. J Clin Invest 13:633–647

    PubMed  CAS  Google Scholar 

  270. Geha RS (1988) Antibody deficiency syndromes and novel immunodeficiencies. Pediatr Infect Dis J 7:S57–S60

    PubMed  CAS  Google Scholar 

  271. Rijkers GT, Sanders LA, Zegers BJ (1993) Anti-capsular polysaccharide antibody deficiency states. Immunodeficiency 5:1–21

    PubMed  CAS  Google Scholar 

  272. Wood P, Stanworth S, Burton J, Jones A, Peckham DG, Green T et al (2007) Recognition, clinical diagnosis and management of patients with primary antibody deficiencies: a systematic review. Clin Exp Immunol 149:410–423

    PubMed  CAS  Google Scholar 

  273. Busse PJ, Razvi S, Cunningham-Rundles C (2002) Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol 109:1001–1004

    PubMed  CAS  Google Scholar 

  274. Lories RJ, Maertens JA, Ceuppens JL, Peetermans WE (2000) The use of polyclonal intravenous immunoglobulins in the prevention and treatment of infectious diseases. Acta Clin Belg 55:163–169

    PubMed  CAS  Google Scholar 

  275. Eibl MM, Wedgwood RJ (1989) Intravenous immunoglobulin: a review. Immunodefic Rev 1(Suppl):1–42

    PubMed  Google Scholar 

  276. Musher DM, Chapman AJ, Goree A, Jonsson S, Briles D, Baughn RE (1986) Natural and vaccine-related immunity to Streptococcus pneumoniae. J Infect Dis 154:245–256

    PubMed  CAS  Google Scholar 

  277. Musher DM, Groover JE, Watson DA, Rodriguez-Barradas MC, Baughn RE (1998) IgG responses to protein-conjugated pneumococcal capsular polysaccharides in persons who are genetically incapable of responding to unconjugated polysaccharides. Clin Infect Dis 27:1487–1490

    PubMed  CAS  Google Scholar 

  278. Bernatoniene J, Finn A (2005) Advances in pneumococcal vaccines: advantages for infants and children. Drugs 65:229–255

    PubMed  CAS  Google Scholar 

  279. WHO (1999) Pneumococcal vaccines. WHO position paper. Wkly Epidemiol Rec 74:177–183

    Google Scholar 

  280. Breitbart E, Wang X, Leka LS, Dallal GE, Meydani SN, Stollar BD (2002) Altered memory B-cell homeostasis in human aging. J Gerontol A Biol Sci Med Sci 57:B304–B311

    PubMed  Google Scholar 

  281. Klinman NR, Kline GH (1997) The B-cell biology of aging. Immunol Rev 160:103–114

    PubMed  CAS  Google Scholar 

  282. Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S et al (2005) CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(−) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol 17:383–390

    PubMed  CAS  Google Scholar 

  283. Johnson SA, Cambier JC (2004) Ageing, autoimmunity and arthritis: senescence of the B cell compartment – implications for humoral immunity. Arthritis Res Ther 6:131–139

    PubMed  CAS  Google Scholar 

  284. Colonna-Romano G, Aquino A, Bulati M, Di Lorenzo G, Listi F, Vitello S et al (2006) Memory B cell subpopulations in the aged. Rejuv Res 9:149–152

    CAS  Google Scholar 

  285. Weksler ME (2000) Changes in the B-cell repertoire with age. Vaccine 18:1624–1628

    PubMed  CAS  Google Scholar 

  286. Weksler ME, Goodhardt M, Szabo P (2002) The effect of age on B cell development and humoral immunity. Springer Semin Immunopathol 24:35–52

    PubMed  CAS  Google Scholar 

  287. Cancro MP (2005) B cells and aging: gauging the interplay of generative, selective, and homeostatic events. Immunol Rev 205:48–59

    PubMed  CAS  Google Scholar 

  288. Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–446

    PubMed  CAS  Google Scholar 

  289. Kolibab K, Smithson SL, Rabquer B, Khuder S, Westerink MA (2005) Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults: analysis of the variable heavy chain repertoire. Infect Immun 73:7465–7476

    PubMed  CAS  Google Scholar 

  290. Zhang Q, Choo S, Finn A (2002) Immune responses to novel pneumococcal proteins pneumolysin, PspA, PsaA, and CbpA in adenoidal B cells from children. Infect Immun 70:5363–5369

    PubMed  CAS  Google Scholar 

  291. Zhang Q, Bernatoniene J, Bagrade L, Pollard AJ, Mitchell TJ, Paton JC et al (2006) Serum and mucosal antibody responses to pneumococcal protein antigens in children: relationships with carriage status. Eur J Immunol 36:46–57

    PubMed  Google Scholar 

  292. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH et al (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197:939–945

    PubMed  CAS  Google Scholar 

  293. Harms G, Hardonk MJ, Timens W (1996) In vitro complement-dependent binding and in vivo kinetics of pneumococcal polysaccharide TI-2 antigens in the rat spleen marginal zone and follicle. Infect Immun 64:4220–4225

    PubMed  CAS  Google Scholar 

  294. Peset Llopis MJ, Harms G, Hardonk MJ, Timens W (1996) Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells. J Allergy Clin Immunol 97:1015–1024

    Google Scholar 

  295. Garg M, Kaplan AM, Bondada S (1994) Cellular basis of differential responsiveness of lymph nodes and spleen to 23-valent Pnu-Imune vaccine. J Immunol 152:1589–1596

    PubMed  CAS  Google Scholar 

  296. Timens W, Boes A, Rozeboom-Uiterwijk T, Poppema S (1989) Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J Immunol 143:3200–3206

    PubMed  CAS  Google Scholar 

  297. Timens W, Rozeboom T, Poppema S (1987) Fetal and neonatal development of human spleen: an immunohistological study. Immunology 60:603–609

    PubMed  CAS  Google Scholar 

  298. Garg M, Subbarao B (1992) Immune responses of systemic and mucosal lymphoid organs to Pnu-Imune vaccine as a function of age and the efficacy of monophosphoryl lipid A as an adjuvant. Infect Immun 60:2329–2336

    PubMed  CAS  Google Scholar 

  299. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol 175:3262–3267

    PubMed  CAS  Google Scholar 

  300. Gray BM, Dillon HC Jr, Briles DE (1983) Epidemiological studies of Streptococcus pneumoniae in infants: development of antibody to phosphocholine. J Clin Microbiol 18:1102–1107

    PubMed  CAS  Google Scholar 

  301. Briles DE, Scott G, Gray B, Crain MJ, Blaese M, Nahm M et al (1987) Naturally occurring antibodies to phosphocholine as a potential index of antibody responsiveness to polysaccharides. J Infect Dis 155:1307–1314

    PubMed  CAS  Google Scholar 

  302. Cabiedes J, Cabral AR, Lopez-Mendoza AT, Cordero-Esperon HA, Huerta MT, Alarcon-Segovia D (2002) Characterization of anti-phosphatidylcholine polyreactive natural autoantibodies from normal human subjects. J Autoimmun 18:181–190

    PubMed  Google Scholar 

  303. Brown M, Schiffman G, Rittenberg MB (1984) Subpopulations of antibodies to phosphocholine in human serum. J Immunol 132:1323–1328

    PubMed  CAS  Google Scholar 

  304. Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362

    PubMed  CAS  Google Scholar 

  305. Brown M, Stenzel PM, Rittenberg MB (1985) Immunologic memory to phosphocholine. VII. Lack of T15 V1 gene utilization in Xid anti-PC hybridomas. J Immunol 135:3558–3563

    PubMed  CAS  Google Scholar 

  306. Baxendale HE, Johnson M, Stephens RC, Yuste J, Klein N, Brown JS et al (2008) Natural human antibodies to pneumococcus have distinctive molecular characteristics and protect against pneumococcal disease. Clin Exp Immunol 151:51–60

    PubMed  CAS  Google Scholar 

  307. Baxendale HE, Goldblatt D (2006) Correlation of molecular characteristics, isotype, and in vitro functional activity of human antipneumococcal monoclonal antibodies. Infect Immun 74:1025–1031

    PubMed  CAS  Google Scholar 

  308. Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS (2005) Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 73:6852–6859

    PubMed  CAS  Google Scholar 

  309. Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A (2000) The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 19(Suppl 1):S87–S95

    PubMed  CAS  Google Scholar 

  310. Balmer P, Borrow R, Findlow J, Warrington R, Frankland S, Waight P et al (2007) Age-stratified prevalences of pneumococcal-serotype-specific immunoglobulin G in England and their relationship to the serotype-specific incidence of invasive pneumococcal disease prior to the introduction of the pneumococcal 7-valent conjugate vaccine. Clin Vaccine Immunol 14:1442–1450

    PubMed  CAS  Google Scholar 

  311. Laine C, Mwangi T, Thompson CM, Obiero J, Lipsitch M, Scott JA (2004) Age-specific immunoglobulin g (IgG) and IgA to pneumococcal protein antigens in a population in coastal kenya. Infect Immun 72:3331–3335

    PubMed  CAS  Google Scholar 

  312. Musher DM, Johnson B Jr, Watson DA (1990) Quantitative relationship between anticapsular antibody measured by enzyme-linked immunosorbent assay or radioimmunoassay and protection of mice against challenge with Streptococcus pneumoniae serotype 4. Infect Immun 58:3871–3876

    PubMed  CAS  Google Scholar 

  313. Sen G, Chen Q, Snapper CM (2006) Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific CD4 + −T-cell priming to young adult levels. Infect Immun 74:2177–2186

    PubMed  CAS  Google Scholar 

  314. Taylor CE, Amsbaugh DF, Stashak PW, Caldes G, Prescott B, Baker PJ (1983) Cell surface antigens and other characteristics of T cells regulating the antibody response to type III pneumococcal polysaccharide. J Immunol 130:19–23

    PubMed  CAS  Google Scholar 

  315. Taylor CE, Stashak PW, Chiang J, Leiserson WM, Caldes G, Prescott B et al (1984) Characteristics of amplifier T cells involved in the antibody response to the capsular polysaccharide of type III Streptococcus pneumoniae. J Immunol 132:3103–3108

    PubMed  CAS  Google Scholar 

  316. LeMaoult J, Szabo P, Weksler ME (1997) Effect of age on humoral immunity, selection of the B-cell repertoire and B-cell development. Immunol Rev 160:115–126

    PubMed  CAS  Google Scholar 

  317. LeMaoult J, Manavalan JS, Dyall R, Szabo P, Nikolic-Zugic J, Weksler ME (1999) Cellular basis of B cell clonal populations in old mice. J Immunol 162:6384–6391

    PubMed  CAS  Google Scholar 

  318. McCool TL, Cate TR, Moy G, Weiser JN (2002) The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195:359–365

    PubMed  CAS  Google Scholar 

  319. Simell B, Korkeila M, Pursiainen H, Kilpi TM, Kayhty H (2001) Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal surface adhesin a, pneumolysin, and pneumococcal surface protein a in children. J Infect Dis 183:887–896

    PubMed  CAS  Google Scholar 

  320. Moberley SA, Holden J, Tatham DP, Andrews RM (2008) Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev CD000422

    Google Scholar 

  321. Austrian R (1978) The Jeremiah Metzger Lecture: Of gold and pneumococci: a history of pneumococcal vaccines in South Africa. Trans Am Clin Climatol Assoc 89:141–161

    PubMed  CAS  Google Scholar 

  322. McCool TL, Weiser JN (2004) Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect Immun 72:5807–5813

    PubMed  CAS  Google Scholar 

  323. Ortqvist A, Henckaerts I, Hedlund J, Poolman J (2007) Non-response to specific serotypes likely cause for failure to 23-valent pneumococcal polysaccharide vaccine in the elderly. Vaccine 25:2445–2450

    PubMed  CAS  Google Scholar 

  324. Millar EV, O’Brien KL, Bronsdon MA, Madore D, Hackell JG, Reid R et al (2007) Anticapsular serum antibody concentration and protection against pneumococcal colonization among children vaccinated with 7-valent pneumococcal conjugate vaccine. Clin Infect Dis 44:1173–1179

    PubMed  CAS  Google Scholar 

  325. Millar EV, Watt JP, Bronsdon MA, Dallas J, Reid R, Santosham M et al (2008) Indirect effect of 7-valent pneumococcal conjugate vaccine on pneumococcal colonization among unvaccinated household members. Clin Infect Dis 47:989–996

    PubMed  Google Scholar 

  326. Powers DC, Anderson EL, Lottenbach K, Mink CM (1996) Reactogenicity and immunogenicity of a protein-conjugated pneumococcal oligosaccharide vaccine in older adults. J Infect Dis 173:1014–1018

    PubMed  CAS  Google Scholar 

  327. Shelly MA, Jacoby H, Riley GJ, Graves BT, Pichichero M, Treanor JJ (1997) Comparison of pneumococcal polysaccharide and CRM197-conjugated pneumococcal oligosaccharide vaccines in young and elderly adults. Infect Immun 65:242–247

    PubMed  CAS  Google Scholar 

  328. Goldblatt D, Southern J, Andrews N, Ashton L, Burbidge P, Woodgate S et al (2009) The immunogenicity of 7-valent pneumococcal conjugate vaccine versus 23-valent polysaccharide vaccine in adults aged 50–80 years. Clin Infect Dis 49:1318–1325

    PubMed  CAS  Google Scholar 

  329. de Roux A, Schmoele-Thoma B, Siber GR, Hackell JG, Kuhnke A, Ahlers N et al (2008) Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin Infect Dis 46:1015–1023

    PubMed  Google Scholar 

  330. Kadioglu A, Coward W, Colston MJ, Hewitt CR, Andrew PW (2004) CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72:2689–2697

    PubMed  CAS  Google Scholar 

  331. Kadioglu A, Gingles NA, Grattan K, Kerr A, Mitchell TJ, Andrew PW (2000) Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68:492–501

    PubMed  CAS  Google Scholar 

  332. Malley R, Srivastava A, Lipsitch M, Thompson CM, Watkins C, Tzianabos A et al (2006) Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 74:2187–2195

    PubMed  CAS  Google Scholar 

  333. Trzcinski K, Thompson CM, Srivastava A, Basset A, Malley R, Lipsitch M (2008) Protection against nasopharyngeal colonization by Streptococcus pneumoniae is mediated by antigen-specific CD4+ T cells. Infect Immun 76:2678–2684

    PubMed  CAS  Google Scholar 

  334. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M (2005) CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci USA 102:4848–4853

    PubMed  CAS  Google Scholar 

  335. Basset A, Thompson CM, Hollingshead SK, Briles DE, Ades EW, Lipsitch M et al (2007) Antibody-independent, CD4+ T-cell-dependent protection against pneumococcal colonization elicited by intranasal immunization with purified pneumococcal proteins. Infect Immun 75:5460–5464

    PubMed  CAS  Google Scholar 

  336. Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q et al (2008) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog 4:e1000159

    PubMed  Google Scholar 

  337. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971

    PubMed  CAS  Google Scholar 

  338. Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:414–417

    PubMed  CAS  Google Scholar 

  339. Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA et al (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181:1835–1848

    PubMed  CAS  Google Scholar 

  340. Hwang KA, Kim HR, Kang I (2009) Aging and human CD4(+) regulatory T cells. Mech Ageing Dev 130:509–517

    PubMed  CAS  Google Scholar 

  341. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723

    PubMed  CAS  Google Scholar 

  342. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    PubMed  CAS  Google Scholar 

  343. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2003) CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci USA 100:15053–15058

    PubMed  CAS  Google Scholar 

  344. Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L (2004) Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med 200:1613–1622

    PubMed  CAS  Google Scholar 

  345. Maue AC, Eaton SM, Lanthier PA, Sweet KB, Blumerman SL, Haynes L (2009) Proinflammatory adjuvants enhance the cognate helper activity of aged CD4 T cells. J Immunol 182:6129–6135

    PubMed  CAS  Google Scholar 

  346. Faria AM, de Moraes SM, de Freitas LH, Speziali E, Soares TF, Figueiredo-Neves SP et al (2008) Variation rhythms of lymphocyte subsets during healthy aging. Neuroimmunomodulation 15:365–379

    PubMed  CAS  Google Scholar 

  347. Grindebacke H, Stenstad H, Quiding-Jarbrink M, Waldenstrom J, Adlerberth I, Wold AE et al (2009) Dynamic development of homing receptor expression and memory cell differentiation of infant CD4 + CD25(high) regulatory T cells. J Immunol 183:4360–4370

    PubMed  CAS  Google Scholar 

  348. Ostergaard C, Brandt C, Konradsen HB, Samuelsson S (2004) Differences in survival, brain damage, and cerebrospinal fluid cytokine kinetics due to meningitis caused by 3 different Streptococcus pneumoniae serotypes: evaluation in humans and in 2 experimental models. J Infect Dis 190:1212–1220

    PubMed  Google Scholar 

  349. Go ES, Ballas ZK (1996) Anti-pneumococcal antibody response in normal subjects: a meta-analysis [see comments]. J Allergy Clin Immunol 98:205–215

    PubMed  CAS  Google Scholar 

  350. Rubins JB, Puri AK, Loch J, Charboneau D, MacDonald R, Opstad N et al (1998) Magnitude, duration, quality, and function of pneumococcal vaccine responses in elderly adults. J Infect Dis 178:431–440

    PubMed  CAS  Google Scholar 

  351. Baxendale HE, Johnson M, Keating SM, et al. (2010) Circulating pneumococcal specific plasma and memory B cells in the elderly two years after pneumococcal conjugate versus polysaccharide vaccination. Vaccine 28:6915–22

    Google Scholar 

  352. Baxendale HE, Keating SM, Johnson M, Southern J, Miller E, Goldblatt D. (2010) The early kinetics of circulating pneumococcal-specific memory B cells following pneumococcal conjugate and plain polysaccharide vaccines in the elderly. Vaccine 28:4763–70

    Google Scholar 

  353. Cohen JM, Khandavilli S, Camberlein E, Hyams C, Baxendale HE, Brown JS (2011) Protective Contributions against Invasive Streptococcus pneumoniae Pneumonia of Antibody and Th17-Cell Responses to Nasopharyngeal Colonisation. PLoS One;6:10:e25558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen E. Baxendale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Baxendale, H.E., Brown, J.S. (2012). Mechanisms of Immune Protection to Pneumococcal Infection in the Young and the Elderly. In: Thiel, A. (eds) Immunosenescence. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0219-8_5

Download citation

Publish with us

Policies and ethics