Skip to main content
Log in

Distal renal tubular acidosis: the value of urinary pH,PCO2 and NH4 + measurements

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Distal renal tubular acidosis (dRTA) is not a single disease. The experimental forms of the syndrome are unsatisfactory as models of the naturally occurring disease, not least because they are seldom complicated by nephrocalcinosis, which is present in the majority of patients with spontaneous disease and contributes to the renal tubular defects found in the syndrome. Impairment of minimal urine pH, reduced urine carbon dioxide tension (PCO2) during passage of alkaline urine, and reduced urinary ammonium (NH4 +) excretion, have all been advocated as essential criteria for the diagnosis of dRTA. Minimal urine pH, measured during metabolic acidosis, sulphate infusion, or after oral frusemide, is the yardstick against which other criteria should be assessed. A reduced urinaryPCO2 is commonly found in dRTA but is not specific for the syndrome and may be accounted for by tubular defects other than those involving reduced distal hydrogen ion secretion. NH4 + excretion is reduced in most patients with renal acidosis whatever the nature of the underlying renal disease; this function is closely related to nephron mass, and is not specifically impaired in renal tubular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodríguez-Soriano J, Vallo A (1990) Renal tubular acidosis. Pediatr Nephr 4: 268–275

    Google Scholar 

  2. Carlisle EJF, Donnelly SM, Halperin ML (1991) RTA: recognize the ammonium defect and pHorget the urine pH. Pediatr Nephrol (in press)

  3. Pines KL, Mudge GH (1951) Renal tubular acidosis with osteomalacia. Am J Med 11: 302–311

    PubMed  Google Scholar 

  4. Lightwood R (1935) Calcium infarction of the kidneys in infants. Arch Dis Child 10: 205–206

    Google Scholar 

  5. Butler AM, Wilson JL, Farber S (1936) Dehydration and acidosis with calcification at renal tubules. J Pediatr 8: 489–499

    Google Scholar 

  6. Feest TG, Wrong OM (1982) Renal tubular acidosis. In: Jones NF, Peters DK (eds) Recent advances in renal medicine, no. 2. Churchill, Edinburgh, pp 243–271

    Google Scholar 

  7. Portale AA, Booth BE, Morris RC (1987) Renal tubular acidosis. In: Holliday TA, Barratt TM, Vernier RL (eds) Pediatric nephrology, 2nd edn. Williams and Wilkins, Baltimore, pp 606–622

    Google Scholar 

  8. Caruana RJ, Buckalew VM (1988) The syndrome of distal (type 1) renal tubular acidosis. Medicine (Baltimore) 67: 84–99

    Google Scholar 

  9. Wrong O, Davies HEF (1959) The excretion of acid in renal disease. Q J Med 29: 259–313

    Google Scholar 

  10. Buckalew VM, McCurdy DK, Ludwig GD, Chaykin LB, Elkinton JR (1968) Incomplete renal tubular acidosis. Am J Med. 45: 32–42

    PubMed  Google Scholar 

  11. Wertlake PT, Butler WT, Hill GJ, Utz JP (1963) Nephrotoxic tubular damage and calcium deposition following amphotericin B therapy. Am J Pathol 43: 449–451

    PubMed  Google Scholar 

  12. Wrong OM, Feest TG (1976) Nephrocalcinosis. In: Peters DK (ed) Advanced medicine, 12th symposium. Pitman, Tunbridge Wells, pp 394–406

    Google Scholar 

  13. Wrong O (1991) Nephrocalcinosis. In: Cameron JS, Davison AM, Grünfeld JP, Kerr DNS, Ritz E (eds) Oxford textbook of clinical nephrology (in press)

  14. Boyd JD, Stearns G (1942) Concomitance of chronic acidosis with late rickets. Am J Dis Child 64: 594–607

    Google Scholar 

  15. Albright F, Burnett CH, Parson W, Reifenstein EC, Roos A (1946) Osteomalacia and late rickets. Medicine (Baltimore) 25: 399–479

    Google Scholar 

  16. Govan ADT (1950) Nephrocalcinosis associated with hyperchloraemia and low plasma-bicarbonate. Q J Med 19: 277–284

    Google Scholar 

  17. Kartal JP, Leve L, Ryder HW, Horowitz MG (1961) Renal tubular acidosis with hypokalemic symptoms. Arch Intern Med 107: 743–749

    PubMed  Google Scholar 

  18. Rosenberg ME, Schendel BB, McCurdy FA, Platt JL (1988) Characterization of immune cells in kidney from patients with Sjögren's syndrome. Am J Kidney Dis 11: 20–22

    PubMed  Google Scholar 

  19. Matsumara R, Kondo Y, Sugiyama T, Sueshi M, Koike T, Takabayashi K, Tomioka H, Yoshida S, Tsuchida H (1988) Immunohistochemical identification of infiltrating mononuclear cells in tubulointerstitial nephritis associated with Sjögren's syndrome. Clin Nephrol 30: 335–340

    PubMed  Google Scholar 

  20. Brown SA, Spyridakis LK, Crowell WA (1986) Distal renal tubular acidosis and hepatic lipidosis in a cat. J Am Vet Med Assoc 189: 1350–1352

    PubMed  Google Scholar 

  21. Thornhill JA (1977) Renal tubular acidosis. In: Kirk RW (ed) Current veterinary therapy, 6th edn. Saunders, Philadelphia, pp 1087–1097

    Google Scholar 

  22. Ziemer EL, Parker HR, Carlson GP, Smith BP, Ishizaki G (1987) Renal tubular acidosis in two horses: diagnostic studies. J Am Vet Med Assoc 190: 289–293

    PubMed  Google Scholar 

  23. Steinmetz PR (1978) Cellular defects in urinary acidification and renal tubular acidosis. In: Andreoli TE, Hoffman JE, Fanestil DD (eds) Physiology of membrane disorders. Plenum, New York, pp 987–1017

    Google Scholar 

  24. Pitts RF, Lotspeich WD, Schiess WA, Ayer RL (1948) The renal regulation of acid base balance in man. I. The nature of the mechanism for acidifying the urine. J Clin Invest 27: 48–56

    Google Scholar 

  25. Gamble JL, Blackfan KD, Hamilton B, (1924–1925) A study of the diuretic action of acid producing salts. J Clin Invest 1: 359–388

    Google Scholar 

  26. Ryberg C (1948) On the formation of ammonia in the kidneys during acidosis. Acta Physiol Scand 15: 114–122

    Google Scholar 

  27. Sartorius OW, Roemmelt JC, Pitts RF (1949) The renal regulation of acid-base balance in man. IV. The nature of the renal compensations in ammonium chloride acidosis. J Clin Invest 28: 423–439

    Google Scholar 

  28. Wood FJY (1955) Ammonium chloride acidosis. Clin Sci 14: 81–89

    PubMed  Google Scholar 

  29. Elkinton JR, Huth EJ, Webster GD, McCance RA (1960) The renal excretion of hydrogen ion in renal tubular acidosis. I. Quantitative assessment of the response to ammonium chloride as an acid load. Am J Med 29: 554–575

    PubMed  Google Scholar 

  30. Pitts RF, Ayer JL, Schiess WA (1949) The renal regulation of acid base balance in man. III. The reabsorption and excretion of bicarbonate. J Clin Invest 28: 35–44

    Google Scholar 

  31. Rodríguez-Soriano J, Boichis H, Edelman CM (1967) Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis. J Pediatr 71: 802–813

    PubMed  Google Scholar 

  32. Smith LH, Schreiner GE (1954) Studies on renal hyperchloremic acidosis. J Lab Clin Med 43: 347–358

    PubMed  Google Scholar 

  33. Reynolds TB (1958) Observations on the pathogenesis of renal tubular acidosis. Am J Med 25: 503–515

    PubMed  Google Scholar 

  34. Wrong OM, Feest TG (1980) The natural history of distal renal tubular acidosis. Contrib Nephrol 21: 137–144

    PubMed  Google Scholar 

  35. Simpson DP (1971) Control of hydrogen ion homeostasis and renal acidosis. Medicine (Baltimore) 50: 503–541

    Google Scholar 

  36. Rodríguez-Soriano J, Vallo A, Castillo G, Oliveros R (1982) Natural history of primary distal renal tubular acidosis treated since infancy. J Pediatr 101: 669–676

    PubMed  Google Scholar 

  37. Schwartz WB, Jenson RL, Relman AS (1955) Acidification of the urine and increased ammonium excretion without change in acid-base equilibrium: sodium reabsorption as a stimulus to the acidifying process. J Clin Invest 34: 673–680

    PubMed  Google Scholar 

  38. Morris RC, Piel CF, Audioun E (1965) Effects of sodium phosphate and sulfate on renal acidification in two patients with renal tubular acidosis. Pediatrics 36: 899–904

    PubMed  Google Scholar 

  39. Seldin DW, Coleman AJ, Carter NW, Rector FC (1967) The effect of Na2SO4 on urinary acidification in renal disease. J Lab Clin Med 69: 893–903

    PubMed  Google Scholar 

  40. Gyory AZ, Edwards KDG (1971) Effect of mersalyl, ethacrynic acid and sodium sulphate infusion on urinary acidification in hereditary renal tubular acidosis. Med J Austr 2: 940–945

    Google Scholar 

  41. Rastogi SP, Crawford C, Wheeler R, Flanigan W, Arruda JAL (1984) Effect of furesemide on urinary acidification in distal renal tubular acidosis. J Lab Clin Med 104: 271–282

    PubMed  Google Scholar 

  42. Batlle DC (1986) Segmental characterization of defects in collecting tubule acidification. Kidney Int 30: 546–554

    PubMed  Google Scholar 

  43. Halperin ML, Goldstein MB, Haig A, Johnson MD, Stinebaugh BJ (1974) Studies on the pathogenesis of type 1 (distal) renal tubular acidosis as revealed by urinaryPCO2 tensions. J Clin Invest 53: 669–677

    PubMed  Google Scholar 

  44. Pak Poy RK, Wrong O (1960) The urinaryPCO2 in renal disease. Clin Sci 19: 631–639

    PubMed  Google Scholar 

  45. Pitts RF, Lotspeich WD (1946) Bicarbonate and the renal regulation of acid-base balance. Am J Physiol 147: 138–154

    Google Scholar 

  46. Berliner RW (1985) Carbon dioxide tension in alkaline urine. In: Seldin DW, Giebisch G (eds) The kidney. Raven, New York, pp 1527–1537

    Google Scholar 

  47. Arruda JAL, Nascimento L, Kumar SK, Kurtzman NA (1977) Factors influencing the formation of urinary carbon dioxide tension. Kidney Int 11: 307–317

    PubMed  Google Scholar 

  48. Kurtzman NA (1983) Acquired distal renal tubular acidosis. Kidney Int 24: 807–819

    PubMed  Google Scholar 

  49. Batlle DC, Sehy JT, Roseman MK, Arruda JAL, Kurtzman NA (1981) Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney 20: 389–396

    Google Scholar 

  50. Stinebaugh BJ, Schloeder FX, Tam SC, Goldstein MB, Halperin ML (1981) Pathogenesis of distal tubular acidosis. Kidney Int 19: 1–7

    PubMed  Google Scholar 

  51. Rocher LL, Tannen RL (1986) The clinical spectrum of renal tubular acidosis. Annu Rev Med 37: 319–331

    PubMed  Google Scholar 

  52. Batlle DC, Sabatini S, Kurtzman NA (1988) On the mechanism of toluene-induced renal tubular acidosis. Nephron 49: 210–218

    PubMed  Google Scholar 

  53. Fillastre JP, Ardaillou R, Richet G (1969) pH etPCO2 urinaires en réponse a une surcharge alcaline au cours de l'insuffisance rénale chronique. Nephron 6: 91–101

    PubMed  Google Scholar 

  54. Henderson LJ, Palmer WW (1915) On the several factors of acid excretion in nephritis. J Biol Chem 21: 37–55

    Google Scholar 

  55. Rodríguez-Soriano J, Vallo A, Castillo G, Oliveros R (1985) Pathophysiology of primary distal renal tubular acidosis. Int J Pediatr Nephrol 6: 71–78

    PubMed  Google Scholar 

  56. Taniguchi N, Tanaka M, Kishihara C, Ohno H, Kondo T, Matsuda I, Fujino T, Harada M (1979) Determination of carbonic anhydrase C and 254-1 microglobulin by radioimmunoiassay in urine of heavy-metal exposed subjects and patients with renal tubular acidosis. Environ Res 20: 154–161

    PubMed  Google Scholar 

  57. Backman U, Danielsson B, Wistrand PJ (1990) The excretion of carbonic anhydrase isozymes CAI and CAII in the urine of apparently healthy subjects and in patients with kidney disease. Scand J Clin Lab Invest 50: 627–633

    PubMed  Google Scholar 

  58. Giammarco RA, Goldstein MB, Halperin JS, Hammeke MD, Richardson RMA, Robson WLM, Stinebaugh BJ, Halperin ML (1978) Collecting duct hydrogen ion secretion in the rabbit: role of potassium. J Lab Clin Med 91: 948–959

    PubMed  Google Scholar 

  59. Star RA, Burg MB, Knepper MA (1986) Demonstration of endogenous luminal carbonic-anhydrase activity in rabbit outer medullary collecting duct. Clin Res 34: A610

    Google Scholar 

  60. Kekomäki M, Maren TH, Wingo CS (1986) Effect of carbonic anhydrase inhibition on (U-B)PCO2 in the alkaline urine of the rabbit. Renal Physiol 9: 326–334

    PubMed  Google Scholar 

  61. Sebastian A, Morris RC (1977) Renal tubular acidosis. Clin Nephrol 7: 216–230

    PubMed  Google Scholar 

  62. Graber ML, Bengele HH, Schwartz JH, Alexander EA (1981) pH andPCO2 profiles of rat inner medullary collecting duct. Am J Physiol 241: F659-F668

    PubMed  Google Scholar 

  63. Dubose TD, Pucacco LR, Green JM (1982) Hydrogen ion secretion by the collecting duct as a determinant of the urine bloodPCO2 gradient in alkaline urine. J Clin Invest 69: 145–156

    PubMed  Google Scholar 

  64. Battle DC (1982) DeltaPCO2 rather than urine-bloodPCO2 as an index of distal acidification. Semin Nephrol 2: 189–190

    Google Scholar 

  65. Haldane JBS, Hill R, Luck JM (1922–1923) Calcium chloride acidosis. J Physiol (Lond) 57: 301–306

    Google Scholar 

  66. Clarke E, Evans BM, MacIntyre I, Milne MD (1955) Acidosis in experimental electrolyte depletion. Clin Sci 14: 421–440

    PubMed  Google Scholar 

  67. Schoolwerth AC, Sandler RS, Hoffman PM, Klahr S (1975) Effects of nephron reduction and dietary protein content on renal ammoniagenesis in the rat. Kidney Int 7: 397–404

    PubMed  Google Scholar 

  68. Tannen RL (1970) The effect of uncomplicated potassium depletion on urine acidification. J Clin Invest 49: 813–827

    PubMed  Google Scholar 

  69. Tannen RL (1977) Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11: 453–465

    PubMed  Google Scholar 

  70. Richardson RMA, Halperin ML (1987) The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis 10: 140–143

    PubMed  Google Scholar 

  71. Madison LL, Seldin DW (1958) Ammonia excretion and renal enzymatic adaptation in human subjects, as disclosed by administration of precursor amino acids. J Clin Invest 37: 1615–1627

    PubMed  Google Scholar 

  72. Wrong OM (1988) Urinary anion gap in hyperchloremic metabolic acidosis. N Engl J Med 319: 585–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrong, O. Distal renal tubular acidosis: the value of urinary pH,PCO2 and NH4 + measurements. Pediatr Nephrol 5, 249–255 (1991). https://doi.org/10.1007/BF01095966

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095966

Key words

Navigation