Skip to main content
Log in

Neuroprotective and symptomatological action of memantine relevant for alzheimer’s disease — a unified glutamatergic hypothesis on the mechanism of action

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The involvement of glutamate mediated neurotoxicity in the pathogenesis of Alzheimer’s disease is finding increasingly more acceptance in the scientific community. Central to this hypothesis is the assumption that in particular glutamate receptors of the N-methyl-D-aspartate (NMDA) type are overactivated in a tonic rather than a phasic manner. Such continuous mild activation leads under chronic conditions to neuronal damage. Moreover, one should consider that impairment of plasticity (learning) may result not only from neuronal damage per se but also from continuous activation of NMDA receptors. To investigate this possibility we tested whether over-activation of NMDA receptors using either non-toxic doses/concentrations of a direct NMDA agonist or through an indirect approach — decrease in magnesium concentration ö produces deficits in plasticity. In fact NMDA bothin vivo (passive avoidance test) andin vitro (LTP in CA1 region) impaired learning and synaptic plasticity. Under these conditions mem-antine which is an uncompetitive NMDA receptor antagonists with features of “improved magnesium” (voltage dependence, affinity) attenuated the deficit. The more direct proof that memantine can act as a surrogate for magnesium was obtained in LTP experiments under low magnesium conditions. In this case as well, impaired LTP was restored in the presence of therapeutically relevant concentrations of memantine (1 µM).In vivo, doses leading to similar brain/serum levels produce neuroprotection in animal models relevant for neurodegeneration in Alzheimer’s disease such as neurotoxicity produced by inflammation in the NBM or β-amyloid injection to the hippocampus. Hence, we postulate that if in Alzheimer’s disease overactivation of NMDA receptors occurs indeed, memantine would be expected to improve both symptoms (cognition) and slow down disease progression because it takes over the physiological function of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias, C, Arrieta, I. and Tapia, R. (1995) Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices.J. Neurosci. Res. 41, 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., Braak, E. and Bohl, J. (1993) Staging of Alzheimer- related cortical destruction.Eur. Neurol. 33, 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Brorson, J.R., Bindokas, V.P., Iwama, T., Marcuccilli, C.J., Chisholm, J.C. and Miller, R.J. (1995) The Ca2+ influx induced by beta-amyloid peptide 25–35 in cultured hippocampal neurons results from network excitation.J. Neurobiol. 26, 325–338.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1995) Calcium: still center-stage in hypoxic- ischemic neuronal death.Trends Neurosci. 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Clements, J.D., Lester, R.A.J., Tong, G., Jahr, C.E. and Westbrook, G.L. (1992) The time course of glutamate in the synaptic cleft.Science 258, 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  • Coan, E.J., Irving, A.J. and Collingridge, G.L. (1989) Low- frequence activation of the NMDA receptor system can prevent the induction of LTP.Neurosci. Lett. 105, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G.L. and Singer, W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11, 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Couratier, P., Lesort, M., Sindou, P., Esclaire, E, Yardin, C. and Hugon, J. (1996a) Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity.Mol. Chem. Neuropathol. 27, 259–273.

    PubMed  CAS  Google Scholar 

  • Couratier, P., Lesort, M., Terro, E, Dussartre, C. and Hugon, J. (1996b) NMDA antagonist blockade of AT8 tau immuno- reactive changesin neuronal cultures.Fund. Clin. Pharmacol. 10, 344–349.

    Article  CAS  Google Scholar 

  • Couratier, P., Sindou, P., Tabaraud, E., Diop, A.G., Spencer, P.S. and Hugon, J. (1995) Modulation of tau neuronal expression induced by NMDA, non-NMDA and metabotropic glutamate receptor agonists.Neurodegeneration 4, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R.F., Wiehager, B., Trief, E., LiLi, M. and Sundstrom, E. (1997) Effects of beta-amyloid-(25–35) peptides on radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor.Neurochem. Res. 22, 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, W.K., Wu, J.Q., Anwyl, R. and Rowan, M.J. (1996) Beta- amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus.Neuroreport 8, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Danysz, W., Parsons, C.G., Bresink, I. and Quack, G. (1995a) Glutamate in CNS disorders — A revived target for drug development.Drug News Perspect. 8, 261–277.

    Google Scholar 

  • Danysz, W., Zajaczkowski, W. and Parsons, C.G.(1995b) Modulation of learning processes by ionotropic glutamate receptor ligands.Behav. Pharmacol. 6, 455–474.

    PubMed  CAS  Google Scholar 

  • Danysz, W., Parsons, C.G., Kornhuber, J., Schmidt, W.J. and Quack, G. (1997) Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies.Neurosci. Biobehav. Rev. 21, 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Ditzler, K. (1991) Efficacy and tolerability of memantine in patients with dementia syndrome.Arzneimittelforschung 8, 773–780.

    Google Scholar 

  • Francis, P.T., Sims, N.R., Procter, A.W. and Bowen, D.M. (1993) Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease — investigative and therapeutic perspectives.J. Neurochem. 60, 1589–1604.

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz, T. and Parsons, C.G. (1999) Memantine restores long term potentiation impaired by tonic NMDA receptor activation following reduction of Mg2+ in hippocampal slices.Neuropharmacology 38, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz, T., Pile, A. and Parsons, C.G. (2000) Differential effects of NMDA-receptor antagonists on long-term potentiation and hypoxic/hypoglycaemic excitotoxicity in hippocampal slices.Neuropharmacology 39, 631–642.

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz, T., Potier, B., Bashir, Z.I., Collingridge, G.L. and Parsons, C.G. (1996) Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices.British Pharmacol. 117, 689–697.

    CAS  Google Scholar 

  • Giulian, D., Haverkamp, L.J., Li, J., Karshin, W.L., Yu, J., Tom, D., Li, X. and Kirkpatrick, J.B. (1995) Senile plaques stimulate microglia to release a neurotoxin found in alzheimer brain.Neurochem. Int. 27, 119–137.

    Article  PubMed  CAS  Google Scholar 

  • Globus, M.Y.T., Busto, R., Dietrich, W.D., Martinez, E., Valdes, I. and Ginsberg, M.D. (1988) Effect of ischemia on thein vivo release of striatal dopamine, glutamate, and γ-aminobutyric acid studied in intracerebral microdialysis.J. Neurochem. 51, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, J.L., Uemura, E. and Cunnick, J.E. (1995) Microglial release of nitric oxide by the synergistic action of beta- amyloid and IFN-gamma.Brain Res. 692, 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Görtelmeyer, R. and Erbler, H. (1992) Memantine in the treatment of mild to moderate dementia syndrome — a double-blind placebo-controlled study.Arzneimittelforschung 42, 904–913.

    PubMed  Google Scholar 

  • Greenamyre, J.T., Young, A.B. and Penny, J.B. (1984) Quantitative autoradiographic distribution of L-[3H] glutamate- binding sites in rat central nervous system.J. Neurosci. 4, 2133–2144.

    PubMed  CAS  Google Scholar 

  • Harris, M.E., Wang, Y.N., Pedigo, N.W., Hensley, K., Butterfield, D.A. and Carney, J.M. (1996) Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures.J. Neurochem. 67, 277–286.

    PubMed  CAS  Google Scholar 

  • Hesselink, M.B., DeBoer, B.G., Breimer, D.D. and Danysz, W. (1999) Brain penetration andin vivo recovery of NMDA receptor antagonists amantadine and memantine: a quantitative microdialysis study.Pharmaceut. Res. 16, 637–642.

    Article  CAS  Google Scholar 

  • Izumi, Y, Clifford, D.B. and Zorumski, C.F. (1992) Low concentrations of N-methyl-D-aspartate inhibit the induction of long-term potentiation in rat hippocampal slices.Neurosci. Lett. 137, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A. and McGeer, P.L. (1997) Beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate.J. Neurosci. Res. 49, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, J. and Quack, G. (1995) Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man.Neurosci. Lett. 195, 137–139.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, J., Weller, M., Schoppmeyer, K. and Riederer, P. (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties.J. Neural Transm. Suppl. 43, 91–104.

    PubMed  CAS  Google Scholar 

  • Lees, G.J. (1993) Contributory mechanisms in the causation of neurodegenerative disorders.Neuroscience 54, 287–322.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Mallory, M., Alford, M., Tanaka, S. and Masliah, E. (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression.J. Neuropathol. Exp. Neurol. 56, 901–911.

    Article  PubMed  CAS  Google Scholar 

  • Masliah, E., Mallory, M., Alford, M., Tanaka, S. and Hansen, L.A. (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease.J. Neuropathol. Exp. Neurol. 57, 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I. and Rydel, R.E. (1992) Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L. and McGeer, E.G. (1995) The inflammatory response system of brain: implications for therapy of alzheimer and other neurodegenerative diseases.Brain Res. Rev. 21, 195–218.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, M.F., Underwood, K.L., Zander, B.A., Mastri, A.R., Sung, J.H. and Frey, W.H. (1992) Risk factors in Alzheimer’s disease — a clinicopathologic study.Neurology 42, 770–775.

    PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo, J.J., Alvarez, X.A., Quack, G. and Cacabelos, R. (1998) Protection by memantine against Aβ(l–40)-induced neurodegeneration in CA1 subfield.Neurobiol. Aging 19, 542.

    Google Scholar 

  • Misztal, M. and Danysz, W. (1995) Comparison of glutamate antagonists in continuous multiple-trial and single-trial dark avoidance.Behav. Pharmacol. 6, 550–561.

    Article  PubMed  CAS  Google Scholar 

  • Misztal, M., Frankiewicz, T., Parsons, C.G. and Danysz, W. (1996) Learning deficits induced by chronic intraventricular infusion of quinolinic acid — protection by MK-801 and memantine.Eur. J. Pharmacol. 296, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, J.A., VanDuijn, CM., Chandra, V., Fratiglioni, L., Graves, A.B., Heyman, A., Jorm, A.F., Kokmen, E., Kondo, K., Rocca, W.A., Shalat, S.L., Soinien, S.L. and Hofman, A. (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies.Int. J. Epidemiol. 20(Suppl. 2), S28-S35.

    PubMed  Google Scholar 

  • Noda, M., Nakanishi, H. and Akaike, N. (1999) Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide.Neuroscience 92, 1465–1474.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. and Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurons.Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., Wozniak, D.F. and Faber, N.B. (1998) Glutamate receptor dysfunction and Alzheimer’s disease.Restor. Neurol. Neurosci. 13, 75–83.

    PubMed  CAS  Google Scholar 

  • Palmer, A.M. and Gershon, S. (1990) Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic?FASEB J. 4, 2745–2752.

    PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W. and Quack, G. (1998) Glutamate in CNS disorders as a target for drug development. An update.Drug News Perspect. 11, 523–569.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W., Bartmann, A., Spielmanns, P., Frankiewicz, T., Hesselink, M., Eilbacher, B. and Quack, G. (1999a) Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics:in vitro andin vivo characterization.Neuropharmacology 38, 85–108.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W. and Quack, G. (1999b) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist — a review of preclinical data.Neuropharmacology 38, 735–767.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Gruner, R., Rozental, J., Millar, J. and Lodge, D. (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (l-amino-3,5-dimethyladamantan).Neuropharmacology 32, 1337–1350.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Panchenko, V.A., Pinchenko, V.O., Tsyndrenko, A.Y. and Krishtal, O.A. (1996) Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine.Eur. J. Neurosci. 8, 446–454.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C.G., Quack, G., Bresink, I., Baran, L., Przegalinski, E., Kostowski, W., Krzascik, P., Hartmann, S. and Danysz, W. (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonistsin vitro with anticonvulsive and motor impairment activityin vivo. Neuropharmacology 34, 1239–1258.

    Article  CAS  Google Scholar 

  • Pizzi, M., Valerio, A., Arrighi, V., Galli, P., Belloni, M., Ribola, M., Alberici, A., Spano, P. and Memo, M. (1995) Inhibition of glutamate-induced neurotoxicity by a tau antisense oligonucleotide in primary culture of rat cerebellar granule cells.Eur. J. Neurosci. 7, 1603–1613.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S.M. and Olney, J.W. (1987) Excitotoxicity and the NMDA receptor.Trends Neurosci. 10, 299–302.

    Article  CAS  Google Scholar 

  • Schulz, J.B., Matthews, R.T., Henshaw, D.R. and Beal, M.F. (1996) Neuroprotective strategies for the treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases.Neuroscience 71, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Tekin, S., AykutBingol, C, Tanridag, T. and Aktan, S. (1998) Antiglutamatergic therapy in Alzheimer’s disease — effects of lamotrigine — short communication.J. Neural Transm. 105, 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Topper, R., Gehrmann, J., Banati, R., Schwarz, M., Block, F, Noth, J. and Kreutzberg, G.W. (1995) Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury.Acta Neuropathol. 89, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Mobley, S.L. (1994) Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat.Brain Res. 655, 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Mobley, S.L. (1995) MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis.Eur. J. Pharmac. Env. Tox. Pharmacol. 293, 267–270.

    Article  CAS  Google Scholar 

  • Wenk, G.L., Danysz, W. and Roice, D.D. (1996) The effects of mitochondrial failure upon cholinergic toxidty in the nucleus basalis.Neuroreport 7, 1453–1456.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L., Hauss-Wegrzyniak, B. and Baker, L.M. (1998) Potential therapies for a novel animal model of Alzheimer’s disease — chronic neuroinflammation of transgenic rats that overexpress human β-amyloid.Neurobiol. Aging 19, S129.

    Google Scholar 

  • Winblad, B. and Poritis, N. (1999) Memantine in severe dementia: results of the M-BEST study (benefit and efficacy in severly demented patients during treatment with memantine).Int. J. Geriatr. Psychiatry. 14, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.Q., Anwyl, R. and Rowan, M.J. (1995) Beta-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus.Neuroreport 6, 2409–2413.

    Article  PubMed  CAS  Google Scholar 

  • Zajaczkowski, W., Frankiewicz, X, Parsons, C.G. and Danysz, W. (1997) Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP.Neuropharmacology 36, 961–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Danysz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danysz, W., Parsons, C.G., MÖbius, HJ. et al. Neuroprotective and symptomatological action of memantine relevant for alzheimer’s disease — a unified glutamatergic hypothesis on the mechanism of action. neurotox res 2, 85–97 (2000). https://doi.org/10.1007/BF03033787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033787

Keywords

Navigation