Skip to main content
Log in

PET with 18F-labelled choline-based tracers for tumour imaging: a review of the literature

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To give an up-to-date overview of the potential clinical utility of 18F-labelled choline derivatives for tumour imaging with positron emission tomography.

Methods

A PubMed search for 18F-labelled choline analogues was performed. Review articles and reference lists were used to supplement the search findings.

Results

18F-labelled choline analogues have been investigated as oncological PET probes for many types of cancer on the basis of enhanced cell proliferation. To date, studies have focused on the evaluation of prostate cancer. Available studies have provided preliminary results for detecting local and metastatic disease. Experience with 18F-fluorocholine PET in other tumour types, including brain and liver tumours, is still limited. In the brain, excellent discrimination between tumour and normal tissue can be achieved due to the low physiological uptake of 18F-fluorocholine. In the liver, in which there is a moderate to high degree of physiological uptake in normal tissue, malignancy discrimination may be more challenging.

Conclusion

PET/CT with 18F-fluorocholine can be used to detect (recurrent) local prostate cancer, but seems to have limited value for T (tumour) and N (nodal) staging. In patients presenting with recurrent biochemical prostate cancer, it is a suitable single-step examination with the ability to exclude distant metastases when local salvage treatment is intended. In the brain, high-grade gliomas, metastases and benign lesions can be distinguished on the basis of 18F-fluorocholine uptake. Moreover, PET imaging is able to differentiate between radiation-induced injury and tumour recurrence. In the liver, 18F-fluorocholine PET/CT seems promising for the detection of hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vallabhajosula S. (18)F-Labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2007;37:400–19.

    Article  PubMed  Google Scholar 

  2. Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006;9:358–65.

    Article  CAS  PubMed  Google Scholar 

  3. Podo F. Tumour phospholipid metabolism. NMR Biomed 1999;12:413–39.

    Article  CAS  PubMed  Google Scholar 

  4. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 2001;61:3599–603.

    CAS  PubMed  Google Scholar 

  5. Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 2003;50:944–54.

    Article  CAS  PubMed  Google Scholar 

  6. Bhakoo KK, Williams SR, Florian CL, Land H, Noble MD. Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res 1996;56:4630–5.

    CAS  PubMed  Google Scholar 

  7. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, et al. Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res 1999;90:419–24.

    CAS  PubMed  Google Scholar 

  8. Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 2002;296:580–3.

    Article  CAS  PubMed  Google Scholar 

  9. Roivainen A, Forsback S, Gronroos T, Lehikoinen P, Kahkonen M, Sutinen E, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 2000;27:25–32.

    Article  CAS  PubMed  Google Scholar 

  10. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–7.

    CAS  PubMed  Google Scholar 

  11. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 2002;43:187–99.

    CAS  PubMed  Google Scholar 

  12. Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR. Biodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. Eur J Nucl Med Mol Imaging 2008;35:1192–203.

    Article  CAS  PubMed  Google Scholar 

  13. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN. Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med 2007;37:420–8.

    Article  PubMed  Google Scholar 

  14. Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med 2001;42:1815–7.

    CAS  PubMed  Google Scholar 

  15. Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K. [18F]Fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent: preparation and application to the on-column preparation of [18F]fluorocholine. Appl Radiat Isot 2002;57:347–52.

    Article  CAS  PubMed  Google Scholar 

  16. Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L. Fully automated [18F]fluorocholine synthesis in the TracerLab MX FDG Coincidence synthesizer. Nucl Med Biol 2008;35:255–60.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi N, Inoue T, Lee J, Yamaguchi T, Shizukuishi K. The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology 2007;72:226–33.

    Article  PubMed  Google Scholar 

  18. Beerlage HP, de Reijke TM, de la Rosette JJ. Considerations regarding prostate biopsies. Eur Urol 1998;34:303–12.

    Article  CAS  PubMed  Google Scholar 

  19. Sedelaar JP, Vijverberg PL, De Reijke TM, de la Rosette JJ, Kil PJ, Braeckman JG, et al. Transrectal ultrasound in the diagnosis of prostate cancer: state of the art and perspectives. Eur Urol 2001;40:275–84.

    Article  CAS  PubMed  Google Scholar 

  20. Crook J, Malone S, Perry G, Bahadur Y, Robertson S, Abdolell M. Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int J Radiat Oncol Biol Phys 2000;48:355–67.

    CAS  PubMed  Google Scholar 

  21. Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol 2008;18:87–97.

    Article  PubMed  Google Scholar 

  22. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology 2007;243:28–53.

    Article  PubMed  Google Scholar 

  23. Sala E, Eberhardt SC, Akin O, Moskowitz CS, Onyebuchi CN, Kuroiwa K, et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology 2006;238:176–83.

    Article  PubMed  Google Scholar 

  24. Hersh MR, Knapp EL, Choi J. Newer imaging modalities to assess tumor in the prostate. Cancer Control 2004;11:353–7.

    PubMed  Google Scholar 

  25. Wang L, Hricak H, Kattan MW, Chen HN, Scardino PT, Kuroiwa K. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology 2006;238:597–603.

    Article  PubMed  Google Scholar 

  26. Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging – clinicopathologic study. Radiology 1999;213:473–80.

    CAS  PubMed  Google Scholar 

  27. Chen M, Dang HD, Wang JY, Zhou C, Li SY, Wang WC, et al. Prostate cancer detection: comparison of T2-weighted imaging, diffusion-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiol 2008;49:602–10.

    Article  CAS  PubMed  Google Scholar 

  28. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235:623–8.

    Article  PubMed  Google Scholar 

  29. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005;173:252–5.

    Article  PubMed  Google Scholar 

  30. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006;47:262–9.

    PubMed  Google Scholar 

  31. Igerc I, Kohlfurst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:976–83.

    Article  CAS  PubMed  Google Scholar 

  32. Kwee SA, Thibault GP, Stack RS, Coel MN, Furusato B, Sesterhenn IA. Use of step-section histopathology to evaluate 18F-fluorocholine PET sextant localization of prostate cancer. Mol Imaging 2008;7:12–20.

    PubMed  Google Scholar 

  33. Tiguert R, Gheiler EL, Tefilli MV, Oskanian P, Banerjee M, Grignon DJ, et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology 1999;53:367–71.

    Article  CAS  PubMed  Google Scholar 

  34. Häcker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006;176:2014–8.

    Article  PubMed  Google Scholar 

  35. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:253–63.

    Article  PubMed  Google Scholar 

  36. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92.

    Article  PubMed  Google Scholar 

  37. Heinisch M, Dirisamer A, Loidl W, Stoiber F, Gruy B, Haim S, et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imaging Biol 2006;8:43–8.

    Article  PubMed  Google Scholar 

  38. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]Fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006;33:1387–98.

    Article  PubMed  Google Scholar 

  39. Mohler J, Babaian RJ, Bahnson RR, Boston B, D’Amico A, Eastham JA, et al. Prostate cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 2007;5:650–83.

    PubMed  Google Scholar 

  40. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 2008;113:895–904.

    Article  CAS  PubMed  Google Scholar 

  41. Vees H, Buchegger F, Albrecht S, Khan H, Husarik D, Zaidi H, et al. 18F-Choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int 2007;99:1415–20.

    Article  CAS  PubMed  Google Scholar 

  42. Hara T. 11C-Choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 2002;4:267–73.

    Article  PubMed  Google Scholar 

  43. Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging 2004;14:285–9.

    PubMed  Google Scholar 

  44. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 2007;244:557–65.

    Article  PubMed  Google Scholar 

  45. Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004;45:1931–8.

    CAS  PubMed  Google Scholar 

  46. Yamamoto Y, Nishiyama Y, Kameyama R, Okano K, Kashiwagi H, Deguchi A, et al. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med 2008;49:1245–8.

    Article  PubMed  Google Scholar 

  47. Salem N, Kuang Y, Wang F, Maclennan GT, Lee Z. PET imaging of hepatocellular carcinoma with 2-deoxy-2[18F]fluoro-D-glucose, 6-deoxy-6[18F] fluoro-D-glucose, [1-11C]-acetate and [N-methyl-11C]-choline. Q J Nucl Med Mol Imaging 2009;53:144–56.

    CAS  PubMed  Google Scholar 

  48. Talbot JN, Gutman F, Fartoux L, Grange JD, Ganne N, Kerrou K, et al. PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging 2006;33:1285–9.

    Article  PubMed  Google Scholar 

  49. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 2004;31:1064–72.

    CAS  PubMed  Google Scholar 

  50. Hara T, Inagaki K, Kosaka N, Morita T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 2000;41:1507–13.

    CAS  PubMed  Google Scholar 

  51. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW, Willemsen AT, et al. Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 2002;43:167–72.

    PubMed  Google Scholar 

  52. Khan N, Oriuchi N, Zhang H, Higuchi T, Tian M, Inoue T, et al. A comparative study of 11C-choline PET and [18F]fluorodeoxyglucose PET in the evaluation of lung cancer. Nucl Med Commun 2003;24:359–66.

    Article  CAS  PubMed  Google Scholar 

  53. Jager PL, Que TH, Vaalburg W, Pruim J, Elsinga P, Plukker JT. Carbon-11 choline or FDG-PET for staging of oesophageal cancer? Eur J Nucl Med 2001;28:1845–9.

    Article  CAS  PubMed  Google Scholar 

  54. Khan N, Oriuchi N, Ninomiya H, Higuchi T, Kamada H, Endo K. Positron emission tomographic imaging with 11C-choline in differential diagnosis of head and neck tumors: comparison with 18F-FDG PET. Ann Nucl Med 2004;18:409–17.

    Article  PubMed  Google Scholar 

  55. Ninomiya H, Oriuchi N, Kahn N, Higuchi T, Endo K, Takahashi K, et al. Diagnosis of tumor in the nasal cavity and paranasal sinuses with [11C]choline PET: comparative study with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) PET. Ann Nucl Med 2004;18:29–34.

    Article  CAS  PubMed  Google Scholar 

  56. Torizuka T, Kanno T, Futatsubashi M, Okada H, Yoshikawa E, Nakamura F, et al. Imaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PET. J Nucl Med 2003;44:1051–6.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingeborg Goethals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, K., Slaets, D., Lambert, B. et al. PET with 18F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging 37, 2188–2193 (2010). https://doi.org/10.1007/s00259-010-1496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1496-z

Keywords

Navigation