Skip to main content

Advertisement

Log in

Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the positron emission tomography (PET) component of [18F]choline PET/MRI and compare it with the PET component of [18F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer.

Methods

Thirty-six patients were examined with simultaneous [18F]choline PET/MRI following combined [18F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUVmax and SUVmean) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUVmax and SUVmean was tested using Pearson’s product-moment correlation and Bland-Altman analysis.

Results

All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUVmax and SUVmean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p < 0.05 and 2.0 vs 2.6, p < 0.001, respectively). Pearson’s product-moment correlation indicated highly significant correlations between SUVmax of PET/CT and PET/MRI (R = 0.86, p < 0.001) as well as between SUVmean of PET/CT and PET/MRI (R = 0.81, p < 0.001). Bland-Altman analysis revealed lower and upper limits of agreement of −2.77 to 3.64 between SUVmax of PET/CT vs PET/MRI and −1.12 to +2.23 between SUVmean of PET/CT vs PET/MRI.

Conclusion

PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUVmax and SUVmean was found. Both SUVmax and SUVmean were significantly lower in [18F]choline PET/MRI than in [18F]choline PET/CT. Differences of SUVmax and SUVmean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [18F]choline between the subsequent examinations and in the respective organ systems have to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Maralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2012;39:936–43.

    Article  PubMed  CAS  Google Scholar 

  2. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33.

    Article  PubMed  Google Scholar 

  3. Wehrl F, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S56–68.

    Article  PubMed  Google Scholar 

  4. Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S93–104.

    Article  PubMed  Google Scholar 

  5. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520–6.

    Article  PubMed  Google Scholar 

  6. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012;53:845–55.

    Article  PubMed  Google Scholar 

  7. Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, Lauenstein TC, et al. Standardized uptake values for [18F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 2013;82:870–6.

    Article  PubMed  Google Scholar 

  8. Bini J, Izquierdo-Garcia D, Mateo J, Machac J, Narula J, Fuster V, et al. Preclinical evaluation of MR attenuation correction versus CT attenuation correction on a sequential whole-body MR/PET scanner. Invest Radiol 2013;48:313–22.

    Article  PubMed  Google Scholar 

  9. Kim JH, Lee JS, Song IC, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 2012;53:1878–82.

    Article  PubMed  Google Scholar 

  10. Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 2013;40(1):12–21.

    Article  PubMed  Google Scholar 

  11. Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 2013;27:152–62.

    Article  PubMed  CAS  Google Scholar 

  12. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–27.

    PubMed  Google Scholar 

  13. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33.

    Article  PubMed  Google Scholar 

  14. Antoch G, Freudenberg LS, Stattaus J, Jentzen W, Mueller SP, Debatin JF, et al. Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR Am J Roentgenol 2002;179:1555–60.

    Article  PubMed  Google Scholar 

  15. Oprea-Lager DE, Vincent AD, van Mooreslaar RJ, Gerritsen WR, van den Eertwegh AJ, Eriksson J, et al. Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One 2012;7:e48430.

    Article  PubMed  CAS  Google Scholar 

  16. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006;33:1387–98.

    Article  PubMed  Google Scholar 

  17. Souvatzoglou M, Eiber M, Takei T, Fürst S, Maurer T, Gaertner F, et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 2013 [Epub ahead of print].

  18. Giussani A, Janzen T, Uusijärvi-Lizana H, Tavola F, Zankl M, Sydoff M, et al. A compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients. J Nucl Med 2012;53:985–93.

    Article  PubMed  CAS  Google Scholar 

  19. Kershah S, Partovi S, Traughber BJ, Muzic RF Jr, Schluchter MD, O’Donnell JK, et al. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Mol Imaging Biol 2013 [Epub ahead of print].

  20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Wetter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetter, A., Lipponer, C., Nensa, F. et al. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT. Eur J Nucl Med Mol Imaging 41, 79–88 (2014). https://doi.org/10.1007/s00259-013-2560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2560-2

Keywords

Navigation