Skip to main content

Advertisement

Log in

Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion?

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although it has long been recognized that thyroid hormone is an effective positive inotrope, its efficacy in supporting hemodynamics in the acute setting of ischaemia and reperfusion (R) without worsening reperfusion injury remains largely unknown. Thus, we investigated the effects of triiodothyronine (T3) on reperfusion injury in a Langendorff–perfused rat heart model of 30 min zero-flow ischaemia and 60 min of (R) with or without T3 (40 µg/l) at R, T3-R60, n = 11 and CNT-R60, n = 10, respectively. Furthermore, phosphorylated levels of intracellular kinases were measured at 5, 15 and 60 min of R. T3 markedly improved postischaemic recovery of left ventricular developed pressure (LVDP%); 56.0% (SEM, 4.4) in T3-R60 versus 38.8% (3.1) in CNT-R60, < 0.05. Furthermore, LDH release was significantly lower in T3-R60. Apoptosis detection by fluorescent probe optical imaging showed increased fluorescent signal in CNT-R60 hearts, while the signal was hardly detectable in T3-R60 hearts. Similarly, caspase-3 activity was found to be 78.2 (8.2) in CNT-R60 vs 40.5 (7.1) in T3-R60 hearts, < 0.05. This response was associated with significantly lower levels of phospho-p38 MAPK at any time point of R. No significant changes in phospho- ERK1/2 and JNK levels were observed between groups. Phospho–Akt levels were significantly lower in T3 treated group at 5 min and no change in phospho–Akt levels were observed at 15 and 60 min between groups. In conclusion, T3 administration at reperfusion can improve postischaemic recovery of function while limiting apoptosis. This may constitute a paradigm of a positive inotropic agent with anti-apoptotic action suitable for supporting hemodynamics in the clinical setting of ischaemia-reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM (2008) Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187

    Article  PubMed  CAS  Google Scholar 

  2. Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart. Thyroid 12:459–466

    Article  PubMed  CAS  Google Scholar 

  3. Du Toit EF, Muller CA, McCarthy J, Opie LH (1999) Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther 290:505–514

    PubMed  CAS  Google Scholar 

  4. du Toit EF, Opie LH (1992) Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res 70:960–967

    PubMed  CAS  Google Scholar 

  5. Dyke CM, Ding M, Abd-Elfattah AS, Loesser K, Dignan RJ, Wechsler AS, Salter DR (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222

    PubMed  CAS  Google Scholar 

  6. Dyke CM, Yeh T, Jr., Lehman JD, Abd-Elfattah A, Ding M, Wechsler AS, Salter DR (1991) Triiodothyronine-enhanced left ventricular function after ischemic injury. Ann Thorac Surg 52:14–19

    PubMed  CAS  Google Scholar 

  7. Engelbrecht AM, Niesler C, Page C, Lochner A (2004) p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol 99:338–350

    Article  PubMed  CAS  Google Scholar 

  8. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102:393–411

    Article  PubMed  CAS  Google Scholar 

  9. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Kg Maier S, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    Article  PubMed  CAS  Google Scholar 

  10. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72

    Article  PubMed  CAS  Google Scholar 

  11. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536

    Article  PubMed  Google Scholar 

  12. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234

    Article  PubMed  CAS  Google Scholar 

  13. Kadletz M, Mullen PG, Ding M, Wolfe LG, Wechsler AS (1994) Effect of triiodothyronine on postischemic myocardial function in the isolated heart. Ann Thorac Surg 57:657–662

    Article  PubMed  CAS  Google Scholar 

  14. Khoynezhad A, Jalali Z, Tortolani AJ (2004) Apoptosis: pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg 78:1109–1118

    Article  PubMed  Google Scholar 

  15. Korbmacher B, Sunderdiek U, Arnold G, Schulte HD, Schipke JD (1994) Improved ventricular function by enhancing the Ca++ sensitivity in normal and stunned myocardium of isolated rabbit hearts. Basic Res Cardiol 89:549–562

    Article  PubMed  CAS  Google Scholar 

  16. Korngold EC, Jaffer FA, Weissleder R, Sosnovik DE (2008) Noninvasive imaging of apoptosis in cardiovascular disease. Heart Fail Rev 13:163–173

    Article  PubMed  Google Scholar 

  17. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    PubMed  CAS  Google Scholar 

  18. Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513

    Article  PubMed  Google Scholar 

  19. Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg 3:140–145

    Article  PubMed  CAS  Google Scholar 

  20. Novitzky D, Matthews N, Shawley D, Cooper DK, Zuhdi N (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16; discussion 16–17

    PubMed  CAS  Google Scholar 

  21. Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, Saranteas T, Xinaris C, Cokkinos DV (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313

    Article  PubMed  CAS  Google Scholar 

  22. Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242:173–180

    Article  PubMed  CAS  Google Scholar 

  23. Pantos C, Mourouzis I, Cokkinos DV (2006) Myocardial ischemia: basic concepts. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H (eds) Myocardial ischemia: from mechanisms to theurapeutic potentials. Springer, New York, pp 11–77

    Google Scholar 

  24. Pantos C, Mourouzis I, Dimopoulos A, Markakis K, Panagiotou M, Xinaris C, Tzeis S, Kokkinos AD, Cokkinos DV (2007) Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury early after acute myocardial infarction. Basic Res Cardiol 102:327–333

    Article  PubMed  CAS  Google Scholar 

  25. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration re-shapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103(4):308–318

    Article  PubMed  CAS  Google Scholar 

  26. Pantos C, Mourouzis I, Tzeis S, Moraitis P, Malliopoulou V, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos D (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460:155–161

    Article  PubMed  CAS  Google Scholar 

  27. Pantos C, Mourouzis I, Xinaris C, Cokkinos DV (2008) Thyroid hormone and myocardial ischaemia. J Steroid Biochem Mol Biol 109:314–322

    Article  PubMed  CAS  Google Scholar 

  28. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329

    Article  PubMed  CAS  Google Scholar 

  29. Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250

    PubMed  Google Scholar 

  30. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M (2001) Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88:175–180

    PubMed  CAS  Google Scholar 

  31. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53:306–318

    PubMed  CAS  Google Scholar 

  32. Taki J, Higuchi T, Kawashima A, Tait JF, Kinuya S, Muramori A, Matsunari I, Nakajima K, Tonami N, Strauss HW (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. J Nucl Med 45:1536–1541

    PubMed  CAS  Google Scholar 

  33. Vanoverschelde JL, Wijns W, Essamri B, Bol A, Robert A, Labar D, Cogneau M, Michel C, Melin JA (1993) Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: effects of dobutamine. Am J Physiol 265:H1884–H1892

    PubMed  CAS  Google Scholar 

  34. Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207:220–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Alexander S. Onassis” foundation and the Haute-Normandie region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos.

Additional information

Returned for 1. Revision: 11 August 2008 1. Revision received: 26 September 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantos, C., Mourouzis, I., Saranteas, T. et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion?. Basic Res Cardiol 104, 69–77 (2009). https://doi.org/10.1007/s00395-008-0758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0758-4

Keywords

Navigation