Skip to main content

Advertisement

Log in

Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The cellular hallmarks of Parkinson’s disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad FJ, Echeverri CJ, Vallee RB, Baas PW (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J Cell Biol 140:391–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069. doi:10.1016/S0006-3495(76)85755-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Black MM, Lasek RJ (1979) Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res 171:401–413

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  7. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  8. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  9. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  CAS  PubMed  Google Scholar 

  10. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    Article  CAS  PubMed  Google Scholar 

  11. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci 106:13010–13015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M (2012) Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72:517–524. doi:10.1002/ana.23747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ghee M, Melki R, Michot N, Mallet J (2005) PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly. FEBS J 272:4023–4033

    Article  CAS  PubMed  Google Scholar 

  15. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725. doi:10.1172/JCI43366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hardy J (2005) Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ‘permissive templating’ as a general mechanism underlying neurodegeneration. Biochem Soc Trans 33:578–581

    Article  CAS  PubMed  Google Scholar 

  17. Hawkes CH, Del Tredici K, Braak H (2009) Parkinson’s disease: the dual hit theory revisited. Ann N Y Acad Sci 1170:615–622

    Article  PubMed  Google Scholar 

  18. Jellinger KA (2008) A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 116:1–16

    Article  CAS  PubMed  Google Scholar 

  19. Jensen PH, Li JY, Dahlstrom A, Dotti CG (1999) Axonal transport of synucleins is mediated by all rate components. Eur J Neurosci 11:3369–3376

    Article  CAS  PubMed  Google Scholar 

  20. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265. doi:10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  21. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  22. Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23:2303–2306

    Article  PubMed  Google Scholar 

  23. Kurowska Z, Englund E, Widner H, Lindvall O, Li J-Y, Brundin P (2011) Signs of degeneration in 12–22 year old grafts of mesencephalic dopamine neurons in patients with Parkinson’s disease. J Parkinsons Dis 1:83–92. doi:10.3233/jpd-2011-11004

    PubMed  Google Scholar 

  24. Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212–221

    Article  CAS  Google Scholar 

  25. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30:735–741

    Article  PubMed  Google Scholar 

  26. Lee HJ, Suk JE, Lee KW, Park SH, Blumbergs PC, Gai WP, Lee SJ (2011) Transmission of synucleinopathies in the enteric nervous system of A53T alpha-synuclein transgenic mice. Exp Neurobiol 20:181–188. doi:10.5607/en.2011.20.4.181

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lerner A, Bagic A (2008) Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord 23:1076–1084

    Article  PubMed  Google Scholar 

  29. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  30. Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25:1091–1096. doi:10.1002/mds.23012

    Article  PubMed  Google Scholar 

  31. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. doi:10.1126/science.1227157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986. doi:10.1084/jem.20112457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous {alpha}-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci 106:20051–20056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885–34898. doi:10.1074/jbc.M110.148460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M et al (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898. doi:10.1038/srep00898

    Article  PubMed Central  PubMed  Google Scholar 

  37. Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91

    Article  CAS  PubMed  Google Scholar 

  38. Parkkinen L, Pirttila T, Alafuzoff I (2008) Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol 115(4):399–407

  39. Phair RD, Gorski SA, Misteli T (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol 375:393–414

    Article  CAS  PubMed  Google Scholar 

  40. Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL (2008) Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience 153:733–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288:21742–21754. doi:10.1074/jbc.M113.451815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. doi:10.1002/ana.24066

    Article  CAS  PubMed  Google Scholar 

  43. Rey NL, Petit GH, Bousset L, Melki R, Brundin P (2013) Transfer of human alpha-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 126:555–573. doi:10.1007/s00401-013-1160-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2008) Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci 28:5248–5256

    Article  CAS  PubMed  Google Scholar 

  45. Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2007) Rapid and intermittent cotransport of slow component-b proteins. J Neurosci 27:3131–3138

    Article  CAS  PubMed  Google Scholar 

  46. Scott DA, Das U, Tang Y, Roy S (2011) Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70:441–454. doi:10.1016/j.neuron.2011.03.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shea TB, Flanagan LA (2001) Kinesin, dynein and neurofilament transport. Trends Neurosci 24:644–648

    Article  CAS  PubMed  Google Scholar 

  48. Snapp EL, Altan N, Lippincott-Schwartz J (2003) Measuring protein mobility by photobleaching GFP chimeras in living cells. Curr Protoc Cell Biol. doi: 10.1002/0471143030.cb2101s19

  49. Ulusoy A, Rusconi R, Perez-Revuelta BI, Musgrove RE, Helwig M, Winzen-Reichert B, Di Monte DA (2013) Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol Med 5:1051–1059. doi:10.1002/emmm.201302475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci 108:4194–4199. doi:10.1073/pnas.1100976108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Marianne Juhlin and AnnaKarin Oldén for their excellent technical support. We thank Andrew C. McCourt for the linguistic revision of this manuscript. This work was funded by grants from the Swedish Research Council; Torsten Söderberg Foundation and Swedish Parkinson Foundation (J.-Y. L.). S.H., O.C., T.A., L.R. and J.-Y. L are active and supported by BAGADILICO—Excellence in Parkinson and Huntington Research, and the Strategic Research Area Multipark (Multidisciplinary research in Parkinson’s disease at Lund University); L.B. and R.M. are supported by the Centre National de la Recherche Scientifique and Grants from the Agence Nationale de la Recherche (ANR-11-BSV8-021-01) and a ‘Coup d’Elan a la Recherche Francaise’ award from Fondation Bettencourt Schueller. Z.Y.W. and J.-Y.L. are supported by National Natural Science Foundation of China (81430025) and the Fundamental Research Funds for Central Universities of China (N130120002).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yi Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmqvist, S., Chutna, O., Bousset, L. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128, 805–820 (2014). https://doi.org/10.1007/s00401-014-1343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1343-6

Keywords

Navigation