Skip to main content

Advertisement

Log in

Gene therapy: a viable therapeutic strategy for Parkinson’s disease?

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Gene therapy represents a potentially useful additional technique to ameliorate the motor symptoms of Parkinson’s disease (PD), and the motor complications of its treatment. The neurodegenerative process itself, as well as the non-motor symptoms of PD, both remain less amenable to most of the current gene therapy approaches. This review presents an overview of the four gene therapies in phase I/II clinical trials, outlines some of the challenges they face, and proposes additional alternative strategies that might improve the clinical prospects of gene therapy for PD. In so doing, we hope to highlight the issue of the current absence of effective treatment for non-motor symptoms of PD and the potential of further candidate targets for gene therapy intervention that might improve upon this, for both specific individuals with genetic forms of PD as well as “sporadic” PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quinn N (1995) Drug treatment of Parkinson’s disease. BMJ 310(6979):575–579

    CAS  PubMed  Google Scholar 

  2. Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2(8):577–588

    CAS  PubMed  Google Scholar 

  3. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    CAS  PubMed  Google Scholar 

  4. Stromberg I, Bjorklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B, Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124(2):401–412

    CAS  PubMed  Google Scholar 

  5. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252–255

    CAS  PubMed  Google Scholar 

  6. Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182(1):107–111

    CAS  PubMed  Google Scholar 

  7. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373(6512):335–339

    CAS  PubMed  Google Scholar 

  8. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773

    CAS  PubMed  Google Scholar 

  9. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589–595

    CAS  PubMed  Google Scholar 

  10. Slevin JT, Gash DM, Smith CD, Gerhardt GA, Kryscio R, Chebrolu H, Walton A, Wagner R, Young AB (2007) Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg 106(4):614–620

    CAS  PubMed  Google Scholar 

  11. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466

    CAS  PubMed  Google Scholar 

  12. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD, Simpson RK Jr, Stacy M, Wooten GF (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60(1):69–73

    CAS  PubMed  Google Scholar 

  13. Creedon DJ, Tansey MG, Baloh RH, Osborne PA, Lampe PA, Fahrner TJ, Heuckeroth RO, Milbrandt J, Johnson EM Jr (1997) Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc Natl Acad Sci USA 94(13):7018–7023

    CAS  PubMed  Google Scholar 

  14. Horger BA, Nishimura MC, Armanini MP, Wang LC, Poulsen KT, Rosenblad C, Kirik D, Moffat B, Simmons L, Johnson E Jr, Milbrandt J, Rosenthal A, Bjorklund A, Vandlen RA, Hynes MA, Phillips HS (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18(13):4929–4937

    CAS  PubMed  Google Scholar 

  15. Rosenblad C, Kirik D, Devaux B, Moffat B, Phillips HS, Bjorklund A (1999) Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur J Neurosci 11(5):1554–1566

    CAS  PubMed  Google Scholar 

  16. Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, Bartus RT (2006) Delivery of neurturin by AAV2 (cere-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60(6):706–715

    CAS  PubMed  Google Scholar 

  17. Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK, Cunningham JJ, Printz MA, Kordower JH, Bartus RT (2007) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of cere-120 for Parkinson’s disease. Neurobiol Dis 27(1):67–76

    CAS  PubMed  Google Scholar 

  18. Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of cere-120 (adeno-associated virus serotype-2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408

    PubMed  Google Scholar 

  19. Ceregene (2009) Ceregene announces clinical data from phase 2 clinical trial of cere-120 for Parkinson’s disease. http://ceregene.com/press_112608.asp. Accessed November 22 2009

  20. Ceregene (2009) Ceregene announces clinical data from phase 2 clinical trial of cere-120 for Parkinson’s disease—longer term follow-up indicates modest efficacy in primary and related endpoints. http://ceregene.com/press_052709.asp. Accessed November 22 2009

  21. Ceregene (2009) Ceregene receives additional grant from Michael J. Fox foundation to expand lond-term testing of cere-120 patiens. http://www.ceregene.com/press_080509.asp. Accessed 20 September 2010

  22. Ceregene (2010) Ceregene has initiated a new phase1/2 trial of cere-120 for Parkinson’s disease. http://www.ceregene.com/press-042810.asp. Accessed 20 September 2010

  23. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-HAADC. Mol Ther 14(4):564–570

    CAS  PubMed  Google Scholar 

  24. Nagatsu T, Yamaguchi T, Kato T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and urine from controls and parkinsonian patients: application of a new radioimmunoassay. Clin Chim Acta 109(3):305–311

    CAS  PubMed  Google Scholar 

  25. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669

    CAS  PubMed  Google Scholar 

  26. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of HAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    CAS  PubMed  Google Scholar 

  27. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm 2007(Suppl 72):113–120

    Google Scholar 

  28. Muramatsu S, Wang L, Ikeguchi K, Fujimoto K, Nakano I, Ozawa K (2002) Recombinant adeno-associated viral vectors bring gene therapy for Parkinson’s disease closer to reality. J Neurol 249(Suppl 2):II36–II40

    PubMed  Google Scholar 

  29. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-l-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 11(11):1509–1519

    CAS  PubMed  Google Scholar 

  30. Levine RA, Miller LP, Lovenberg W (1981) Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis. Science 214(4523):919–921

    CAS  PubMed  Google Scholar 

  31. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, Kingsman SM, Kingsman AJ, Mazarakis ND (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic-l-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 22(23):10302–10312

    CAS  PubMed  Google Scholar 

  32. Jarraya B, Boulet S, Ralph GS, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M, Delzescaux T, Drouot X, Herard AS, Day DM, Brouillet E, Kingsman SM, Hantraye P, Mitrophanous KA, Mazarakis ND, Palfi S (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1(2):2ra4

    PubMed  Google Scholar 

  33. OxfordBioMedica (2010) Oxford biomedica announces two-year phase I/II results of prosavin in Parkinson’s disease. http://www.oxfordbiomedica.co.uk/page.asp?pageid=59&newsid=259. Accessed 20 September 2010

  34. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364

    CAS  PubMed  Google Scholar 

  35. Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, During MJ (2002) Subthalamic gad gene therapy in a Parkinson’s disease rat model. Science 298(5592):425–429

    CAS  PubMed  Google Scholar 

  36. Lee B, Lee H, Nam YR, Oh JH, Cho YH, Chang JW (2005) Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther 12(15):1215–1222

    CAS  PubMed  Google Scholar 

  37. Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27(3):501–509

    CAS  PubMed  Google Scholar 

  38. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne gad gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    CAS  PubMed  Google Scholar 

  39. Bjorklund A, Bjorklund T, Kirik D (2009) Gene therapy for dopamine replacement in Parkinson’s disease. Sci Transl Med 1(2):2ps2

    PubMed  Google Scholar 

  40. Bjorklund T, Kirik D (2009) Scientific rationale for the development of gene therapy strategies for Parkinson’s disease. Biochim Biophys Acta 1792(7):703–713

    PubMed  Google Scholar 

  41. Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93(5):1956–1961

    CAS  PubMed  Google Scholar 

  42. Chen MK, Kuwabara H, Zhou Y, Adams RJ, Brasic JR, McGlothan JL, Verina T, Burton NC, Alexander M, Kumar A, Wong DF, Guilarte TR (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105(1):78–90

    CAS  PubMed  Google Scholar 

  43. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245

    PubMed  Google Scholar 

  44. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  45. Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, Burnett M, Parisi JE, Klos KJ, Ahlskog JE (2009) Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 15(Suppl 3):S1–S5

    PubMed  Google Scholar 

  46. Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16(7):916–928

    PubMed  Google Scholar 

  47. Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(Pt 6):1314–1322

    PubMed  Google Scholar 

  48. Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33(1):1–24

    CAS  PubMed  Google Scholar 

  49. Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, Baudrexel S, Diederich NJ, Heiss WD, Hilker R (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74(11):885–892

    CAS  PubMed  Google Scholar 

  50. Whitworth AJ, Pallanck LJ (2009) The PINK1/parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41(6):499–503

    CAS  PubMed  Google Scholar 

  51. Lo Bianco C, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, Aebischer P (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci USA 101(50):17510–17515

    CAS  PubMed  Google Scholar 

  52. Yamada M, Mizuno Y, Mochizuki H (2005) Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson’s disease. Hum Gene Ther 16(2):262–270

    CAS  PubMed  Google Scholar 

  53. Yasuda T, Miyachi S, Kitagawa R, Wada K, Nihira T, Ren YR, Hirai Y, Ageyama N, Terao K, Shimada T, Takada M, Mizuno Y, Mochizuki H (2007) Neuronal specificity of alpha-synuclein toxicity and effect of parkin co-expression in primates. Neuroscience 144(2):743–753

    CAS  PubMed  Google Scholar 

  54. Mochizuki H (2009) Parkin gene therapy. Parkinsonism Relat Disord 15(Suppl 1):S43–S45

    PubMed  Google Scholar 

  55. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann NY Acad Sci 1147:93–104

    CAS  PubMed  Google Scholar 

  56. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218(2):235–246

    PubMed  Google Scholar 

  57. Barber-Singh J, Seo BB, Nakamaru-Ogiso E, Lau YS, Matsuno-Yagi A, Yagi T (2009) Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Res 12(4):259–267

    CAS  PubMed  Google Scholar 

  58. Santosh PS, Arora N, Sarma P, Pal-Bhadra M, Bhadra U (2009) Interaction map and selection of microRNA targets in Parkinson’s disease-related genes. J Biomed Biotechnol 2009:363145

    Google Scholar 

  59. Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12(9):1129–1135

    CAS  PubMed  Google Scholar 

  60. Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27(18):2432–2443

    CAS  PubMed  Google Scholar 

  61. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206

    CAS  PubMed  Google Scholar 

  62. McFarland NR, Lee JS, Hyman BT, McLean PJ (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109(3):838–845

    CAS  PubMed  Google Scholar 

  63. Ciron C, Cressant A, Roux F, Raoul S, Cherel Y, Hantraye P, Deglon N, Schwartz B, Barkats M, Heard JM, Tardieu M, Moullier P, Colle MA (2009) Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 20(4):350–360

    CAS  PubMed  Google Scholar 

  64. Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J, Elsworth JD, Roth RH, Samulski RJ, Redmond DE Jr (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18(3):588–593

    CAS  PubMed  Google Scholar 

  65. Kalaitzakis ME, Christian LM, Moran LB, Graeber MB, Pearce RK, Gentleman SM (2009) Dementia and visual hallucinations associated with limbic pathology in Parkinson’s disease. Parkinsonism Relat Disord 15(3):196–204

    CAS  PubMed  Google Scholar 

  66. Burn D, Emre M, McKeith I, De Deyn PP, Aarsland D, Hsu C, Lane R (2006) Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord 21(11):1899–1907

    PubMed  Google Scholar 

  67. Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, Leroi I, Pozo-Rodriguez F, Minthon L, Londos E (2009) Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol 8(7):613–618

    CAS  PubMed  Google Scholar 

  68. Kennington E (2009) Gene therapy delivers an alternative approach to Alzheimer’s disease. Nat Rev Drug Discov 8(4):275

    CAS  PubMed  Google Scholar 

  69. Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474

    CAS  PubMed  Google Scholar 

  70. Jasinska-Myga B, Putzke JD, Wider C, Wszolek ZK, Uitti RJ (2010) Depression in Parkinson’s disease. Can J Neurol Sci 37(1):61–66

    PubMed  Google Scholar 

  71. Aarsland D, Kurz MW (2010) The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 289(1–2):18–22

    PubMed  Google Scholar 

  72. Muzerengi S, Contrafatto D, Chaudhuri KR (2007) Non-motor symptoms: identification and management. Parkinsonism Relat Disord 13(Suppl 3):S450–S456

    PubMed  Google Scholar 

  73. Stowe RL, Ives NJ, Clarke C, van Hilten J, Ferreira J, Hawker RJ, Shah L, Wheatley K, Gray R (2008) Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev 2008(2):CD006564

    Google Scholar 

  74. Fenelon G, Mahieux F, Huon R, Ziegler M (2000) Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123(Pt 4):733–745

    PubMed  Google Scholar 

  75. Kumar S, Bhatia M, Behari M (2002) Sleep disorders in Parkinson’s disease. Mov Disord 17(4):775–781

    PubMed  Google Scholar 

  76. Mitra T, Chaudhuri KR (2009) Sleep dysfunction and role of dysautonomia in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S93–S95

    PubMed  Google Scholar 

  77. Comella CL (2008) Sleep disorders in Parkinson’s disease. Curr Treat Options Neurol 10(3):215–221

    PubMed  Google Scholar 

  78. Lee JE, Kim KS, Shin HW, Sohn YH (2010) Factors related to clinically probable REM sleep behavior disorder in Parkinson disease. Parkinsonism Relat Disord 16(2):105–108

    PubMed  Google Scholar 

  79. Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompre S, Carrier J, Montplaisir J (2002) REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease. Neurology 59(4):585–589

    CAS  PubMed  Google Scholar 

  80. Onofrj M, Thomas A, D’ Andreamatteo G, Iacono D, Luciano AL, Di Rollo A, Di Mascio R, Ballone E, Di Iorio A (2002) Incidence of RBD and hallucination in patients affected by Parkinson’s disease: 8-year follow-up. Neurol Sci 23(2):91–94

    Google Scholar 

  81. Arnulf I, Leu S, Oudiette D (2008) Abnormal sleep and sleepiness in Parkinson’s disease. Curr Opin Neurol 21(4):472–477

    PubMed  Google Scholar 

  82. Lees AJ, Blackburn NA, Campbell VL (1988) The nighttime problems of Parkinson’s disease. Clin Neuropharmacol 11(6):512–519

    CAS  PubMed  Google Scholar 

  83. Sakakibara R, Uchiyama T, Yamanishi T, Shirai K, Hattori T (2008) Bladder and bowel dysfunction in Parkinson’s disease. J Neural Transm 115(3):443–460

    CAS  PubMed  Google Scholar 

  84. Winge K, Skau AM, Stimpel H, Nielsen KK, Werdelin L (2006) Prevalence of bladder dysfunction in Parkinson’s disease. Neurourol Urodyn 25(2):116–122

    PubMed  Google Scholar 

  85. Park A, Stacy M (2009) Non-motor symptoms in Parkinson’s disease. J Neurol 256(Suppl 3):293–298

    PubMed  Google Scholar 

  86. Magerkurth C, Schnitzer R, Braune S (2005) Symptoms of autonomic failure in Parkinson’s disease: prevalence and impact on daily life. Clin Auton Res 15(2):76–82

    PubMed  Google Scholar 

  87. Sakakibara R, Uchiyama T, Yamanishi T, Kishi M (2010) Genitourinary dysfunction in Parkinson’s disease. Mov Disord 25(1):2–12

    PubMed  Google Scholar 

  88. Papatsoris AG, Deliveliotis C, Singer C, Papapetropoulos S (2006) Erectile dysfunction in Parkinson’s disease. Urology 67(3):447–451

    CAS  PubMed  Google Scholar 

  89. Chou KL, Evatt M, Hinson V, Kompoliti K (2007) Sialorrhea in Parkinson’s disease: a review. Mov Disord 22(16):2306–2313

    PubMed  Google Scholar 

  90. Kalf JG, de Swart BJ, Borm GF, Bloem BR, Munneke M (2009) Prevalence and definition of drooling in Parkinson’s disease: a systematic review. J Neurol 256(9):1391–1396

    CAS  PubMed  Google Scholar 

  91. Pfeiffer RF (2003) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2(2):107–116

    PubMed  Google Scholar 

  92. Edwards LL, Pfeiffer RF, Quigley EM, Hofman R, Balluff M (1991) Gastrointestinal symptoms in Parkinson’s disease. Mov Disord 6(2):151–156

    CAS  PubMed  Google Scholar 

  93. Jost WH, Eckardt VF (2003) Constipation in idiopathic Parkinson’s disease. Scand J Gastroenterol 38(7):681–686

    CAS  PubMed  Google Scholar 

  94. Ford B (1998) Pain in Parkinson’s disease. Clin Neurosci 5(2):63–72

    CAS  PubMed  Google Scholar 

  95. Aarsland D, Marsh L, Schrag A (2009) Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 24(15):2175–2186

    PubMed  Google Scholar 

  96. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in drosophila parkin mutants. Proc Natl Acad Sci USA 100(7):4078–4083

    CAS  PubMed  Google Scholar 

  97. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279(18):18614–18622

    CAS  PubMed  Google Scholar 

  98. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609

    CAS  PubMed  Google Scholar 

  99. Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11:e22

    PubMed  Google Scholar 

  100. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of drosophila pink1 is rescued by parkin. Proc Natl Acad Sci USA 103(28):10793–10798

    CAS  PubMed  Google Scholar 

  101. Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 105(32):11364–11369

    CAS  PubMed  Google Scholar 

  102. Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-KappaB signaling. Hum Mol Genet 19(2):352–363

    CAS  PubMed  Google Scholar 

  103. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590

    CAS  PubMed  Google Scholar 

  104. Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 102(51):18676–18681

    CAS  PubMed  Google Scholar 

  105. Ng CH, Mok SZ, Koh C, Ouyang X, Fivaz ML, Tan EK, Dawson VL, Dawson TM, Yu F, Lim KL (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29(36):11257–11262

    CAS  PubMed  Google Scholar 

  106. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82(2):283–289

    CAS  PubMed  Google Scholar 

  107. Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10(12):837–841

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was undertaken at UCL/UCLH and was funded in part by the Department of Health NIHR Biomedical Research Centres funding scheme. The Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London is supported by the Parkinson’s Appeal.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foltynie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, A.L., Foltynie, T. Gene therapy: a viable therapeutic strategy for Parkinson’s disease?. J Neurol 258, 179–188 (2011). https://doi.org/10.1007/s00415-010-5796-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5796-9

Keywords

Navigation