Skip to main content
Log in

68Ga-DOTA-TATE PET vs. 123I-MIBG in Identifying Malignant Neural Crest Tumours

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to compare imaging with 123I-MIBG and 68Ga-DOTA-TATE in neural crest tumours (NCT) to see if the latter could offer more advantage in detecting extra lesions and have higher sensitivity for malignant lesions.

Procedures

We retrospectively reviewed 12 patients (M = 10, F = 2; age range 20–71 years) with NCT (phaeochromocytomas = 7, paragangliomas = 4, medullary thyroid cancer = 1) who underwent both 68Ga-DOTA-TATE positron emission tomography (PET) or PET/computed tomography (CT) and 123I-MIBG single-photon emission computed tomography within 6 months. Visual assessment of all lesions and measurement of target/non-target (T/N) ratio in selected lesions were performed. Five patients (aged 50 or less) had SDHB screening results correlated with imaging results of both radiopharmaceuticals. All patients had contrast-enhanced CT and/or other cross-sectional imaging.

Results

68Ga-DOTA-TATE PET showed tumour lesions in ten out of 12 patients with confirmed disease, while 123I-MIBG showed lesions in five out of 12 patients. In one patient, both 68Ga-DOTA-TATE PET and 123I-MIBG were negative, but CT, magnetic resonance imaging, and 2-deoxy-2-[18F]fluoro-D-glucose PET scans identified a lesion in the thorax. 68Ga-DOTA-TATE and 123I-MIBG detected a total of 30 lesions, of which 29/30 were positive with 68Ga-DOTA-TATE and 7/30 with 123I-MIBG. We also found higher incidence of SDHB positive results in patients with positive 68Ga-DOTA-TATE.

Conclusion

Our limited data suggest that 68Ga-DOTA-TATE is a better imaging agent for NCT and detects significantly more lesions with higher T/N ratio compared to 123I-MIBG. 68Ga-DOTA-TATE was more likely to detect malignant lesions as indicated by correlating imaging results with SDHB screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neumann HP, Bausch B, McWhinny SR, Bender BU, Gimm O, Franke G et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466

    Article  PubMed  CAS  Google Scholar 

  2. O’Riordain D, Young WF, Grant CS, Carney JA, van Heerden (1996) Clinical spectrum and outcome of functional extraadrenal paraganglioma. World J Surg 20:916–922

    Article  PubMed  Google Scholar 

  3. Reisch N, Peczkowska M, Januszewicz A, Neumann HP (2006) Pheochromocytoma: presentation, diagnosis and treatment. J Hypertens 24:2331–2339

    Article  PubMed  CAS  Google Scholar 

  4. Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, Gishen P (2007) 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 28:359–363

    Article  PubMed  Google Scholar 

  5. Ilias I, Chen CC, Carrasquillo JA, Whatley M, Ling A, Lazurova I et al (2008) Comparison of 6-18F-fluorodopamine positron emission tomography to 123I-metaiodobenzylguanidine and 111In-pentetreotide scintigraphy in the localization of non-metastatic and metastatic pheochromocytoma. J Nucl Med 49:1613–1619

    Article  PubMed  Google Scholar 

  6. Lewigton VJ (2003) Targeted radionuclide therapy for neuroendocrine tumours. Endocr-Relat Cancer 10:497–501

    Article  Google Scholar 

  7. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66S

    PubMed  CAS  Google Scholar 

  8. Smith SL, Vincent RM, Perkins AC, Wastie ML, Sokal M (2001) Does simple estimation of 131I-metaiodobenzylguanidine uptake in patients with neural crest tumours correlate with clinical outcome? Nucl Med Commun 22:257–260

    Article  PubMed  CAS  Google Scholar 

  9. Pasini B, Stratakis CA (2009) SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266(1):19–42

    Article  PubMed  CAS  Google Scholar 

  10. Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  PubMed  CAS  Google Scholar 

  11. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54

    Article  PubMed  CAS  Google Scholar 

  12. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  PubMed  CAS  Google Scholar 

  13. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270

    Article  PubMed  CAS  Google Scholar 

  14. Karagiannis A, Mikhailidis DP, Athyros VG, Harsoulis F (2007) Pheochromocytoma: an update on genetics and management. Endocr-Relat Cancer 14:935–956

    Article  PubMed  CAS  Google Scholar 

  15. Benn DE, Gimenez-Roqueplo A-P, Reilly JR, Bertherat J, Burgess J, Byth K et al (2006) Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab 91:27–836

    Google Scholar 

  16. Klein RD, Jin L, Rumilla K, Young WF Jr, Lloyd RV (2008) Germline SDHB mutations are common in patients with apparently sporadic sympathetic paragangliomas. Diagn Mol Pathol 17(2):94–100

    Article  PubMed  CAS  Google Scholar 

  17. Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95(16):1196–1204

    Article  PubMed  CAS  Google Scholar 

  18. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB (2007) The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr-Relat Cancer 14(3):569–585

    Article  PubMed  CAS  Google Scholar 

  19. Ilias I, Pacak K (2004) Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89:479–491

    Article  PubMed  CAS  Google Scholar 

  20. Go AS (1998) Refining probability: an introduction to the use of diagnostic tests. In: Friedland DJ (ed) Evidence-based medicine. McGraw-Hill, New York, pp 12–33

    Google Scholar 

  21. Wieland DM, Wu JL, Brown LE (1980) Radiolabelled adrenergic neuron blocking agents: adrenomedullary imaging with 131Iiodobenzylguanidine. J Nucl Med 21:349–353

    PubMed  CAS  Google Scholar 

  22. Beierwaltes WH (1991) Endocrine imaging: parathyroid, adrenal cortex and medulla, and other endocrine tumors. Part II. J Nucl Med 32:1627–1639

    PubMed  CAS  Google Scholar 

  23. McEwan AJ, Shapiro B, Sisson JC, Beierwaltes WH, Ackery DM (1985) Radioiodobezylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucl Med 15:132–153

    Article  PubMed  CAS  Google Scholar 

  24. Shulkin BL, Ilias I, Sisson JC, Pacak K (2006) Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann NY Acad Sci 1073:374–382

    Article  PubMed  Google Scholar 

  25. Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE et al (2006) 11C-metahydroxyephedrine and 18F-fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected phaeochromocytoma. Ann Surg Oncol 13(2):187–197

    Article  PubMed  Google Scholar 

  26. Reynolds S, Lewington V (2008) Radionuclide imaging of phaeochromocytoma and paraganglioma. Imaging 34:21–24

    Google Scholar 

  27. Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albersy F, Dullaart RPF (2008) 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med 49:1232–1237

    Article  PubMed  Google Scholar 

  28. Ilias I, Pacak K (2008) A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol 35(Suppl 1):S27–S34

    Article  PubMed  CAS  Google Scholar 

  29. Brink I, Hoegerle S, Klisch J, Bley TA (2005) Imaging of pheochromocytoma and paraganglioma. Fam Cancer 4(1):61–68

    Article  PubMed  CAS  Google Scholar 

  30. Maurea S, Mainolfi C, Wang H, Varrella P, Panico MR, Klain M et al (1996) Positron emission tomography (PET) with fludeoxyglucose F 18 in the study of adrenal masses: comparison of benign and malignant lesions. Radiol Med 92:782–787

    PubMed  CAS  Google Scholar 

  31. Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41

    PubMed  CAS  Google Scholar 

  32. Neumann DR, Basile KE, Bravo EL, Chen EQ, Go RT (1996) Malignant phaeochromocytoma of the anterior mediastinum: PET findings with [18F] FDG and 82Rb. J Comput Assist Tomogr 20:312–316

    Article  PubMed  CAS  Google Scholar 

  33. Mamede M, Carrasquillo JA, Chen CC, Del Corral P, Whatley M, Ilias I et al (2006) Discordant localization of 2-[18F]-fluoro-2-deoxy-D-glucose in 6-[18F]-fluorodopamine- and [(123)I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun 27:31–36

    Article  PubMed  Google Scholar 

  34. Timmers H, Chen C, Carrasquillo J, Whatley M, Ling A, Havekes B et al (2009) Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12):4757–4767

    Article  PubMed  CAS  Google Scholar 

  35. Khan S, Lloyd C, Szyszko T, Win Z, Rubello D, Al-Nahhas A (2008) PET imaging in endocrine tumours. Minerva Endocrinol 33(2):41–52

    PubMed  CAS  Google Scholar 

  36. Al-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D (2007) What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34(12):1897–1901

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The authors declare they have no conflict of interest in the preparation of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Rubello.

Additional information

Significance: The data of the present study are consistent with a higher sensitivity of Ga-DOTA-TATE PET in comparison with 123-MIBG conventional scintigraphy in detecting tumoral deposits of metastatic malignant neural crest tumours. This may be related both to the higher spatial resolution of the PET system in comparison with conventional gamma camera imaging and to the investigation of a different metabolic pathway of these tumours: the somatostatin receptor density evaluated by Ga68-DOTA-TATE in comparison with the catechomaminergic behaviour of the tumoral cells evaluated by 123-MIBS scintigraphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naji, M., Zhao, C., Welsh, S.J. et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in Identifying Malignant Neural Crest Tumours. Mol Imaging Biol 13, 769–775 (2011). https://doi.org/10.1007/s11307-010-0396-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0396-8

Key words

Navigation