Skip to main content
Log in

Cosmological Particle Creation and Dynamical Casimir Effect

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We compute particle creation for a real massive scalar field conformally coupled to a spatially closed Robertson–Walker space-time background, with time-dependent scale factor. This is a dynamical Casimir effect with moving boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Barber, B. P., Hiller, R. A., Löfstedt, R., and Putterman, S. J. (1997). Physics Reports 281, 65.

    Google Scholar 

  • Birrell, N. D. and Davies, P. C. W. (1982). Quantum Fields in Curved Space, Chambridge University Press, Cambridge.

    Google Scholar 

  • Bordag, M., Mohideen, U., and Mostepanenko, V. M. (2001). New Developments in the Casimir Effect. Physics Reports 353, 1–205.

    Google Scholar 

  • Calucci, G. (1992). Journal of Physics A (Mathematical and General) 25, 3873.

    Google Scholar 

  • Candelas, P. and Deutsch, D. (1977). Proceedings of the Royal Society of London A 354, 79.

    Google Scholar 

  • DeWitt, B. S. (1953). Physical Review 90, 357.

    Google Scholar 

  • Dodonov, V. V. and Klimov, A. B. (1996). Physical Review A 53, 2664.

    Google Scholar 

  • Dodonov, V. V. (1998). Resonance Photon Generation in a Vibrating Cavity. Journal of Physics A (Mathematical and General 31, 9835.

    Google Scholar 

  • Eberlein, C. (1996). Physical Review A 53, 2772.

    Google Scholar 

  • Ford, L. H. (1997). Quantum Field Theory in Curved Spacetime. gr-qc/9707062.

  • Frolov, V. P. and Serebriany, E. M. (1979). Journal of Physics A (Mathematical and General) 12, 2415.

    Google Scholar 

  • Frolov, V. P. and Serebriany, E. M. (1980). Journal of Physics A (Mathematical and General) 13, 3205.

    Google Scholar 

  • Frolov, V. and Singh, D. (1999). Quantum Effects in the Presence of Expanding Semi-Transparent Spherical Mirrors. Classical and Quantum Gravity 16, 3693.

    Google Scholar 

  • Imamura, T. (1960). Physical Review 118, 1430.

    Google Scholar 

  • Jauregui, R., Villarreal, C., and Hacyan, S. (1995). Modern Physics Letters A 10, 7.

    Google Scholar 

  • Ji, J.-Y., Jung, H.-H., Park, J.-W., and Soh, K.-S. (1997). Production of photons by the parametric resonance in the dynamical Casimir effect. Physical Review A 56, 4440.

    Google Scholar 

  • Lambrecht, A., Jackel, M. T., and Reynaud, S. (1996). Motion Induced Radiation from a Vibrating Cavity. Physical Review Letters 77, 615.

    Google Scholar 

  • Liberati, S., Visser, M., Belgiorno, F., and Sciama, D. W. (2000a). Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal. Journal of Physics A (Mathematical and General) 33, 2251.

    Google Scholar 

  • Liberati, S., Visser, M., Belgiorno, F., and Siama, D. W. (2000b). Siama, Sonoluminescence as a QED vacuum effect. I: The Physical Scenario. Physical Review D 61, 085023.

    Google Scholar 

  • Milton, K. A. (1995). Casimir Energy for a Spherical Cavity in a Dielectric: Toward a Model for Sonoluminescence, hep-th/9510091.

  • Milton, K. and Ng, J. (1998). Physical Review E 57, 5504.

    Google Scholar 

  • Milton, K. A. (1999). In Applied Field Theory, C. Lee, H. Min, and Q.-H. Park, eds., Chungbum, Seul, p. 1, hep-th/9901011.

  • Mostepanenko, V. M. and Trunov, N. N. (1997). The Casimir Effect and its Applications, Oxford Science Publications, New York.

    Google Scholar 

  • Nugayev, R. M. and Bashkov, V. I. (1979). Physics Letters A 69, 385.

    Google Scholar 

  • Nugayev, R. M. (1982). Physics Letters A 91, 216.

    Google Scholar 

  • Parker, L. (1968). Physical Review Letters 21, 562.

    Google Scholar 

  • Parker, L. (1969). Physical Review 183, 1057.

    Google Scholar 

  • Parker, L. (1971). Physical Review D 3, 346.

    Google Scholar 

  • Plunien, G., Mueller, B., and Greiner, W. (1986). Physics Reports 134, 87.

    Google Scholar 

  • Sassaroli, E., Srivastava, Y. N., and Widom, A. (1994). Physical Review A 50, 1027.

    Google Scholar 

  • Schrodinger, E. (1939). Physica (Utrecht) 6, 899.

    Google Scholar 

  • Schutzhold, R., Plunien, G., and Soff, G. (1998). Trembling cavities in the canonical approach. Physical Review A 57, 2311.

    Google Scholar 

  • Schwinger, J. (1993). Proceedings of the National Academy of Sciences 90, 985, 2105, 4505, 7285.

    Google Scholar 

  • Schwinger, J. (1994). Proceedings of the National Academy of Sciences 91, 6473.

    Google Scholar 

  • Setare, M. R. and Saharian, A. A. (2001). Particle creation by moving spherical shell in the dynamical Casimir effect. Modern Physics Letters A 16, 927.

    Google Scholar 

  • Setare, M. R. and Saharian, A. A. (2001). Particle creation in an oscillating spherical cavity. Modern Physics Letters A 16, 1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setare, M.R. Cosmological Particle Creation and Dynamical Casimir Effect. International Journal of Theoretical Physics 43, 2237–2242 (2004). https://doi.org/10.1023/B:IJTP.0000049022.58541.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000049022.58541.34

Navigation