Skip to main content
Log in

Therapeutic myocardial angiogenesis: Past, present and future

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

One of the main goals in the treatment of myocardial ischemia is the development of effective therapy for angiogenesis and neovascularization. The first evidence demonstrating alleviation of myocardial ischemia and increased number of collateral blood vessels was reported in the early 90s following intra-coronary administration of basic fibroblast growth factor protein in canine. This study established the ground for extensive investigations to demonstrate the use of other angiogenic growth factor proteins, genes administered directly or incorporated in viruses, and more recently, endothelial progenitor stem cells (embryonic and adults). The positive results observed in animals failed, in most cases, to repeat themselves in clinical trials in human patients. Therefore, additional experiments are warranted to allow full understanding of the mechanism underlying new blood vessel formation before further clinical studies are undertaken. This review will explore the milestones of angiogenic investigations and their clinical application. (Mol Cell Biochem 264: 75–83, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heilmann C, Beyersdorf F, Lutter G: Collateral growth: Cells arrive at the construction site. Cardiovasc Surg 10: 570–578, 2002

    Article  PubMed  Google Scholar 

  2. Isner JM, Asahara T: Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103: 1231–1236, 1999

    PubMed  Google Scholar 

  3. Tabibiazar R, Rockson SG: Angiogenesis and the ischemic heart. Eur Heart J 22: 903–918, 2001

    Article  PubMed  Google Scholar 

  4. Zachary I, Gliki G: Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49: 568–581, 2001

    Article  PubMed  Google Scholar 

  5. Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IM, Kardami E: Acute protection of ischemic heart by FGF-2: Involvement of FGF-2 receptors and protein kinase C. Am J Physiol 282: H1071–H1080, 2002

    Google Scholar 

  6. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91: 3527–3561, 1998

    PubMed  Google Scholar 

  7. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT, Semenza GL: Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103: 691–696, 1999

    PubMed  Google Scholar 

  8. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T: Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438, 1999

    Article  PubMed  Google Scholar 

  9. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet PA, Windecker S, Eberli FR, Meier B: Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: A randomized, double-blind, placebo-controlled study. Circulation 104: 2012–2017, 2001

    PubMed  Google Scholar 

  10. Voskuil M, van Royen N, Hoefer IE, Seidler R, Guth BD, Bode C, Schaper W, Piek JJ, Buschmann IR: Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am J Physiol 284: H1422–H1428, 2003

    Google Scholar 

  11. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W: Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101: 40–50, 1998

    PubMed  Google Scholar 

  12. Felmeden DC, Blann AD, Lip GYH: Angiogenesis: Basic pathophysiology and implications for disease. Eur Heart J 24: 586–603, 2003

    Article  PubMed  Google Scholar 

  13. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233–240, 1998

    PubMed  Google Scholar 

  14. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C: Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257: 1401–1403, 1992

    PubMed  Google Scholar 

  15. Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E, Varda-Bloom N, Nass D, Engelberg S, Eldar M: Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 22: 2001–2006, 1993

    PubMed  Google Scholar 

  16. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa R, Klingbeil C, Epstein SE: Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266: H1588–H15895, 1994

    PubMed  Google Scholar 

  17. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF: Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89: 2183–2189, 1994

    PubMed  Google Scholar 

  18. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, Robison WG, Stiber JA Jr, Correa R, Epstein SE, Unger EF: Effects of chronic systemic administration of basic fibrob-last growth factor on collateral development in the canine heart. Circulation 91: 145–153, 1995

    PubMed  Google Scholar 

  19. Scheinowitz M, Kotlyar AA, Zimand S, Leibovitz I, Varda-Bloom N, Ohad D, Goldberg I, Engelberg S, Savion N, Eldar M: Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr Med Assoc J 4: 109–113, 2002

    PubMed  Google Scholar 

  20. Cuevas PF, Carceller F, Lozano RM, Crespo A, Zazo M, Giménez-Gallego G: Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 15: 29–40, 1997

    PubMed  Google Scholar 

  21. Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA: Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol 280: H1039–H1050, 2001

    Google Scholar 

  22. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, Nakamura T, Kaneda K, Higaki J, Ogihara T: Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: Up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther 7: 417–427, 2000

    Article  PubMed  Google Scholar 

  23. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W: Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 80: 829–837, 1997

    PubMed  Google Scholar 

  24. Detillieux KA, Sheikh F, Kardami E, Cattini PA: Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57: 8–19, 2003

    Article  PubMed  Google Scholar 

  25. Khan TA, Sellke FW, Laham RJ: Gene therapy progress and prospects: Therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther 10: 285–291, 2003

    PubMed  Google Scholar 

  26. Post MJ, Laham R, Sellke FW, Simons M: Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 49: 522–531, 2001

    Article  PubMed  Google Scholar 

  27. Hammond HK, McKirnan MD: Angiogenic gene therapy for heart disease: A review of animal studies and clinical trials. Cardiovasc Res 49: 561–567, 2001

    Article  PubMed  Google Scholar 

  28. Gilgenkrantz H, Duboc D, Juillard V, Couton D, Pavirani A, Guillet JG, Briand P, Kahn A: Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: Role of the immune response. Hum Gene Ther 6: 1265–1274, 1995

    PubMed  Google Scholar 

  29. Tabata H, Silver M, Isner JM: Arterial gene transfer of acidic fibroblast growth factor for therapeutic angiogenesis in vivo: Critical role of secretion signal in use of naked DNA. Cardiovasc Res 35: 470–479, 1997

    Article  PubMed  Google Scholar 

  30. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH: Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2: 534–539, 1996

    PubMed  Google Scholar 

  31. Horvath KA, Doukas J, Lu CY, Belkind N, Greene R, Pierce GF, Fullerton DA: Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann Thorac Surg 74: 481–486, 2002

    Article  PubMed  Google Scholar 

  32. Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M, Esakof DD, Isner JM, Symes JF: Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 10: 2953–2960, 1999

    Article  PubMed  Google Scholar 

  33. Safi J Jr, DiPaula AF Jr, Riccioni T, Kajstura J, Ambrosio G, Becker LC, Anversa P, Capogrossi MC: Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart. Microvasc Res 58: 238–249, 1999

    PubMed  Google Scholar 

  34. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux RB, Goldsmith SJ, Christian TF, Sanborn TA, Kovesdi I, Hackett N, Isom WO, Crystal RG, Rosengart TK: Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 115: 168–176, 1998

    Article  PubMed  Google Scholar 

  35. Lee LY, Patel SR, Hackett NR, Mack CA, Polce DR, El-Sawy T, Hachamovitch R, Zanzonico P, Sanborn TA, Parikh M, Isom OW, Crystal RG, Rosengart TK: Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 69: 14–24, 2000

    Google Scholar 

  36. Sellke FW, Laham RJ, Edelman ER, Pearlman JD, Simons M: Therapeutic angiogenesis with basic fibroblast growth factor: Technique and early results. Ann Thorac Surg 65: 1540–1544, 1998

    Article  PubMed  Google Scholar 

  37. Kleiman NS, Califf RM: Results from late-breaking clinical trials sessions at ACCIS 2000 and ACC 2000. J Am Coll Cardiol 36: 310–325, 2000

    PubMed  Google Scholar 

  38. Ruel M, Laham RJ, Parker JA, Post MJ, Ware JA, Simons M, Selke FW: Long-term effects of surgical angiogenic therapy with FGF-2 protein. J Thorac Cardiovasc Surg 124: 28–34, 2002

    Article  PubMed  Google Scholar 

  39. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM: Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98: 2800–2804, 1998

    PubMed  Google Scholar 

  40. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM: Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103: 2138–2143, 2001

    PubMed  Google Scholar 

  41. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW: Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100: 468–74, 1999

    PubMed  Google Scholar 

  42. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, West A, Rade JJ, Marrott P, Hammond HK, Engler RL: Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105: 1291–1297, 2002

    PubMed  Google Scholar 

  43. Isner JM: Myocardial gene therapy. Nature 415: 234–239, 2002

    Article  PubMed  Google Scholar 

  44. Evans MJ: The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol 28: 163–176, 1972

    PubMed  Google Scholar 

  45. Labosky PA, Barlow DP, Hogan BL: Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182: 157–168, 1994

    PubMed  Google Scholar 

  46. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156, 1981

    Article  PubMed  Google Scholar 

  47. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA: Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227: 271–278, 2000

    PubMed  Google Scholar 

  48. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology 18: 399–404, 2000

    PubMed  Google Scholar 

  49. Richards M, Fong CY, Chan WK, Wong PC, Bongso A: Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20: 933–936, 2002

    Article  PubMed  Google Scholar 

  50. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407–414, 2001

    PubMed  Google Scholar 

  51. Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E: Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88: 3424–3431, 1996

    PubMed  Google Scholar 

  52. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endotheial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99: 4391–4396, 2002

    Article  PubMed  Google Scholar 

  53. Gepstein L: Derivation and potential applications of human embryonic stem cells. Circ Res 91: 866–876, 2002

    Article  PubMed  Google Scholar 

  54. Ambler CA, Schmunk GM, Bautch VL: Stem cell-derived endothelial cells/progenitors migrate and pattern in the embryo using the VEGF signaling pathway. Dev Biol 257: 205–219, 2003

    Article  PubMed  Google Scholar 

  55. Kennedy D: Stem cells: Still here, still awaiting. Science 300: 865, 2003

    Article  PubMed  Google Scholar 

  56. Hughes S: Cardiac stem cells. J Pathol 197: 468–478, 2002

    Article  PubMed  Google Scholar 

  57. Sbarbati R, de Boer M, Marzilli M, Scarlattini M, Rossi G, van Mourik JA: Immunologic detection of endothelial cells in human whole blood. Blood 77: 764–769, 1991

    PubMed  Google Scholar 

  58. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967, 1997

    Article  PubMed  Google Scholar 

  59. Voermans C, van Hennik PB, van der Schoot CE: Homing of human hematopoietic stem and progenitor cells: new insights, new challenges? J Hematother Stem Cell Res 10: 725–738, 2001

    PubMed  Google Scholar 

  60. Moore MA: Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem 38: 29–38, 2002

    Google Scholar 

  61. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228, 1999

    PubMed  Google Scholar 

  62. Tepper OM, Galiano RD, Kalka C, Gurtner GC: Endothelial progenitor cells: The promise of vascular stem cells for plastic surgery. Plast Reconstr Surg 111: 846–854, 2003

    Article  PubMed  Google Scholar 

  63. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP: Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105: 71–77, 2000

    PubMed  Google Scholar 

  64. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF: Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87: 728–730, 2000

    PubMed  Google Scholar 

  65. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S: Vascular trauma induces rapid but transient mobilization of VEGFR2 AC133 endothelial precursor cells. Circ Res 88: 167–174, 2001

    PubMed  Google Scholar 

  66. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ: Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 9: 95–103, 2003

    PubMed  Google Scholar 

  67. Rehman J, Li J, Orschell CM, March KL: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169, 2003

    Article  PubMed  Google Scholar 

  68. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S: VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101: 168–172, 2003

    Article  PubMed  Google Scholar 

  69. Andrews RG, Briddell RA, Hill R, Gough M, McNiece IK: Engraftment of primates with G-CSF mobilized peripheral blood CD34+ progenitor cells expanded in G-CSF, SCF and MGDF decreases the duration and severity of neutropenia. Stem Cells 17: 210–218, 1999

    PubMed  Google Scholar 

  70. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA: Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106: 571–578, 2000

    PubMed  Google Scholar 

  71. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97: 3422–3427, 2000

    Article  PubMed  Google Scholar 

  72. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T: Therapeutic po-tential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637, 2001

    PubMed  Google Scholar 

  73. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, Eckey T, Henze E, Zeiher AM, Dimmeler S: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107: 2134–2139, 2003

    Article  PubMed  Google Scholar 

  74. Baron MH: Molecular regulation of embryonic hematopoiesis and vascular development: A novel pathway. J Hematother Stem Cell Res 10: 587–594, 2001

    Article  PubMed  Google Scholar 

  75. Rosenzweig A: Endothelial progenitor cells. N Engl J Med 348: 581–582, 2003

    Article  PubMed  Google Scholar 

  76. Hristov M, Erl W, Weber PC: Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23: xx–xx, 2003

    Google Scholar 

  77. Brehm M, Zeus T, Strauer BE: Stem cells—clinical application and perspectives. Herz 27: 611–620, 2002

    Article  PubMed  Google Scholar 

  78. Friedenstein AJ, Piatezky-Shapiro II, Petrakova KV: Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16: 381–190, 1966

    PubMed  Google Scholar 

  79. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM: Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189: 54–63, 2001

    Article  PubMed  Google Scholar 

  80. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN: Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2: 477–488, 2000

    Article  PubMed  Google Scholar 

  81. Erices A, Conget P, Minguell JJ: Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109: 235–242, 2000

    Article  PubMed  Google Scholar 

  82. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436, 2001

    Article  PubMed  Google Scholar 

  83. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P: Transplanted adult bone marrowcells repair myocardial infarcts in mice. Ann NY Acad Sci 938: 221–230, 2001

    PubMed  Google Scholar 

  84. Krause Ds, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105: 369–377, 2001

    Article  PubMed  Google Scholar 

  85. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T: Augmentation of postnatal neovascularization with autologous bone marrow transplantation Circulation 103: 897–903, 2001

    PubMed  Google Scholar 

  86. Yoshida M, Horimoto H, Mieno S, Nomura Y, Okawa H, Nakahara K, Sasaki S: Intra-arterial bone marrow cell transplantation induces angiogenesis in rat hindlimb ischemia. Eur Surg Res 35: 86–91, 2003

    Article  PubMed  Google Scholar 

  87. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC: The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 122: 699–705, 2001

    Article  PubMed  Google Scholar 

  88. Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, Liu P, Li RK: Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123: 1132–1140, 2002

    Article  PubMed  Google Scholar 

  89. Min JY, Sullivan MF, Yang Y, Zhang JP, Converso KL, Morgan JP, Xiao YF: Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg 74: 1568–1575, 2002

    Article  PubMed  Google Scholar 

  90. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ: Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Ann Thorac Surg 73: 1919–1925, 2002

    Article  PubMed  Google Scholar 

  91. El Oakley RM, Seow KK, Tang TP, Kok CW, Teh M, Lim YT, Lim SK: Whole bone marrow transplantation induces angiogenesis following acute ischemia. Redox Rep 7: 215–218, 2002

    Article  PubMed  Google Scholar 

  92. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T: Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107: 461–468, 2003

    Article  PubMed  Google Scholar 

  93. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R: Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37: 1726–1732, 2001

    Article  PubMed  Google Scholar 

  94. Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J: Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 10: 621–629, 2003

    Article  PubMed  Google Scholar 

  95. Scheinowitz M, Bahar H, Peretz G, Binderman I: A new model of bone marrow derived angiogenesis induced by prior exercise training. 50th Israel Heart Society Meeting, Israel 2003 (abstract)

  96. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW: In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation 107: 2290–2293, 2003

    Article  PubMed  Google Scholar 

  97. Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, Harada M, Miura T, Matsuzaki M, Esato K: Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: Clinical trial and preliminary results. Jpn Circ J 65: 845–847, 2001

    Article  PubMed  Google Scholar 

  98. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schümichen C, Nienaber CA, Freund N, Steinhoff G: Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45–46, 2003

    Article  PubMed  Google Scholar 

  99. Tse HF, Kwong YL, Chan JKF, Lo G, Ho CL, Lau C: Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361: 47–49, 2003

    Article  PubMed  Google Scholar 

  100. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918, 2002

    Article  PubMed  Google Scholar 

  101. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302, 2003

    Article  PubMed  Google Scholar 

  102. Dragowska VHW, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM: Evidence for a mitotic clock in human hematopoietic stem.83 cells: Loss of telomeric DNA with age. Proc Natl Acad Sci USA 91: 9857–9860, 1994

    PubMed  Google Scholar 

  103. Mayani H, Lansdorp PM: Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 83: 2410–2417, 1994

    PubMed  Google Scholar 

  104. Brümmendorf TH, Rufer N, Baerlocher GM, Roosnek E, Lansdorp PM: Limited telomere shortening in hematopoietic stem cells after transplantation. Ann NY Acad Sci 938: 1–8, 2001

    PubMed  Google Scholar 

  105. Rao MS, Mattson MP: Stem cells and aging: Expanding the possibilities. Mech Ageing Dev 122: 713–734, 2001

    Article  PubMed  Google Scholar 

  106. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, Imada T, Iwasaka T: Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 22: 1804–1810, 2002

    Article  PubMed  Google Scholar 

  107. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM: Adult bone marrow is a rich source of human mesenchymal 'stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121: 368–374, 2003

    Article  PubMed  Google Scholar 

  108. Rocha V, Wagner JE Jr, Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, Gluckman E: Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 342: 1846–1854, 2000

    Article  PubMed  Google Scholar 

  109. Cairo MS, Wagner JE: Placental and/or umbilical cord blood: An alternative source of hematopoietic stem cells for transplantation. Blood 90: 4665–4678, 1997

    PubMed  Google Scholar 

  110. Gluckman E, Rocha V, Chammard AB, Locatelli F, Arcese W, Pasquini R, Ortega J, Souillet G, Ferreira E, Laporte JP, Fernandez M, Chastang C: Outcome of cord-blood transplantation from related and unrelated donors. New Engl J Med 337: 373–381, 1997

    Article  PubMed  Google Scholar 

  111. Nakahata T, Ogawa M: Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono-and multipotential hemopoietic progenitors. J Clin Invest 70: 1324–1328, 1982

    PubMed  Google Scholar 

  112. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T: Transplanted cord blood—derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105: 1527–1536, 2000

    PubMed  Google Scholar 

  113. Yoo ES, Lee KE, Seo JW, Yoo EH, Lee MA, Im SA, Mun YC, Lee SN, Huh JW, Kim MJ, Jo DY, Ahn JY, Lee SM, Chung WS, Kim JH, Seong CM: Adherent cells generated during long-term culture of human umbilical cord blood CD34+ cells have characteristics of endothelial cells and beneficial effect on cord blood ex vivo expansion. Stem Cells 21: 228–35, 2003

    Article  PubMed  Google Scholar 

  114. Fan CL, Li Y, Gao PJ, Liu JJ, Zhang XJ, Zhu DL: Differentiation of endothelial progenitor cells from human umbilical cord blood CD34+ cells in vitro. Acta Pharmacol Sin 24: 212–218, 2003

    PubMed  Google Scholar 

  115. Wada M, Ebihara Y, Ma F, Yagasaki H, Ito M, Takahashi T, Mugishima H, Takahashi S, Tsuji K: Tunica interna endothelial cell kinase expression and hematopoietic and angiogenic potentials in cord blood CD34+ cells. Int J Hematol 77: 245–252, 2003

    PubMed  Google Scholar 

  116. Pomyje J, Zivny J, Sefc L, Plasilova M, Pytlik R, Necas E: Expression of genes regulating angiogenesis in human circulating hematopoietic cord blood CD34+ /CD133+ cells. Eur J Haematol 70: 143–150, 2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheinowitz, M. Therapeutic myocardial angiogenesis: Past, present and future. Mol Cell Biochem 264, 75–83 (2004). https://doi.org/10.1023/B:MCBI.0000044376.78158.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000044376.78158.51

Navigation