Skip to main content
Log in

Pathogenesis of Diabetic Nephropathy

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. USRDS Report—incidence and prevalence of ESRD. Am J Kidney Dis 2003;41(452): 42-56.

    Google Scholar 

  2. Fenton SS, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, Jeffery JR, Kjellstrand CM. Hemodialysis versus peritoneal dialysis: A comparison of adjusted mortality rates. Am J Kidney Dis 1997;30:334-342.

    Google Scholar 

  3. Chantrel F, Enache I, Bouiller M, Kolb I, Kunz K, Petitjean P, Moulin B, Hannedouche T. Abysmal prognosis of patients with type 2 diabetes entering dialysis. Nephrol Dial Transplant 1999;14:129-136.

    Google Scholar 

  4. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999;341:1127-1133.

    Google Scholar 

  5. Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB, Akots G, Rich SS, Freedman BI. Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 1997;46:882-886.

    Google Scholar 

  6. Krolewski AS. Genetics of diabetic nephropathy: Evidence for major and minor gene effects. Kidney Int 1999;55:1582-1596.

    Google Scholar 

  7. Deckert T, Horowitz IM, Kofoed-Enevoldsen A, Kjellen L, Deckert M, Lykkelund C, Burcharth F. Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy. Diabetes 1991;40:764-770.

    Google Scholar 

  8. Bank N. Mechanisms of diabetic hyperfiltration. Kidney Int 1991;40:792-807.

    Google Scholar 

  9. Bank N, Aynedjian HS. Progressive increases in luminal glucose stimulate proximal sodium absorption in normal and diabetic rats. J Clin Invest 1990;86:309-316.

    Google Scholar 

  10. Kreisberg JI. Insulin requirement for contraction of cultured rat glomerular mesangial cells in response to angiotensin II: Possible role for insulin in modulating glomerular hemodynamics. Proc Natl Acad Sci USA 1982;79:4190-4192.

    Google Scholar 

  11. Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 1989;51:299-313.

    Google Scholar 

  12. Bank N, Lahorra MA, Aynedjian HS. Acute effect of calcium and insulin on hyperfiltration of early diabetes. Am J Physiol 1987;252:E13-E20.

    Google Scholar 

  13. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 2001;107:217-224.

    Google Scholar 

  14. Wakabayashi I, Hatake K, Kimura N, Kakishita E, Nagai K. Modulation of vascular tonus by the endothelium in experimental diabetes. Life Sci 1987;40:643-648.

    Google Scholar 

  15. Veelken R, Hilgers KF, Hartner A, Haas A, Bohmer KP, Sterzel RB. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy. J Am Soc Nephrol 2000;11:71-79.

    Google Scholar 

  16. Choi KC, Kim NH, An MR, Kang DG, Kim SW, Lee J. Alterations of intrarenal renin-angiotensin and nitric oxide systems in streptozotocin-induced diabetic rats. Kidney Int Suppl 1997;60:S23-S27.

    Google Scholar 

  17. Ichihara A, Inscho EW, Imig JD, Navar LG. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol 1998;274:F516-F524.

    Google Scholar 

  18. Komers R, Anderson S. Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol 2003;284:F1121-F1137.

    Google Scholar 

  19. Baumgartl HJ, Sigl G, Banholzer P, Haslbeck M, Standl E. On the prognosis of IDDM patients with large kidneys. Nephrol Dial Transplant 1998;13:630-634.

    Google Scholar 

  20. Wiseman MJ, Saunders AJ, Keen H, Viberti G. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes. N Engl J Med 1985;312:617-621.

    Google Scholar 

  21. Tuttle KR, Bruton JL, Perusek MC, Lancaster JL, Kopp DT, De-Fronzo RA. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med 1991;324:1626-1632.

    Google Scholar 

  22. Flyvbjerg A. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 2000;43:1205-1223.

    Google Scholar 

  23. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001;44:1957-1972.

    Google Scholar 

  24. Taft JL, Nolan CJ, Yeung SP, Hewitson TD, Martin FI. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 1994;43:1046-1051.

    Google Scholar 

  25. Gandhi M, Olson JL, Meyer TW. Contribution of tubular injury to loss of remnant kidney function. Kidney Int 1998;54:1157-1165.

    Google Scholar 

  26. Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, Muollo B, Sambataro M, Abaterusso C, Baggio B, Crepaldi G, Nosadini R. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996;39:1569-1576.

    Google Scholar 

  27. Nuyts GD, Yaqoob M, Nouwen EJ, Patrick AW, McClelland P, MacFarlane IA, Bell GM, DeBroe ME. Human urinary intestinal alkaline phosphatase as an indicator of S3-segement-specific alterations in incipient diabetic nephropathy. Nephrol Dial Transplant 1994;9:377-381.

    Google Scholar 

  28. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int 1999;56:1627-1637.

    Google Scholar 

  29. Cao Z, Cooper ME. Role of angiotensin II in tubulointerstitial injury. Semin Nephrol 2001;21:554-562.

    Google Scholar 

  30. Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type I diabetes. Am J Med 1985;78:785-794.

    Google Scholar 

  31. Mogensen CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 1987;31:673-689.

    Google Scholar 

  32. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225-232.

    Google Scholar 

  33. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003;348:2285-2293.

    Google Scholar 

  34. Gambaro G, Cavazzana AO, Luzi P, Piccoli A, Borsatti A, Crepaldi G, Marchi E, Venturini AP, Baggio B. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int 1992;42:285-291.

    Google Scholar 

  35. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: A meta-analysis. Ann Intern Med 1996;124:627-632.

    Google Scholar 

  36. Kalk WJ, Osler C, Constable J, Kruger M, Panz V. Influence of dietary protein on glomerular filtration and urinary albumin excretion in insulin-dependent diabetes. Am J Clin Nutr 1992;56:169-173.

    Google Scholar 

  37. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287:356-359.

    Google Scholar 

  38. Bakris G, Williams M, Dworkin L, Elliott W, Epstein M, Toto R, Tuttle K, Douglas J, Hsueh W, Sowers J. Preserving renal function in adults with hypertension and diabetes: A consensus approach. Am J Kidney 2000;36:646-661.

    Google Scholar 

  39. Lewis JB, Berl T, Bain RP, Rohde RD, Lewis EJ. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group. Am J Kidney Dis 1999;34:809-817.

    Google Scholar 

  40. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. Jama 2003;289:2560-2572.

    Google Scholar 

  41. Taal MW, Chertow GM, Rennke HG, Gurnani A, Jiang T, Shahsafaei A, Troy JL, Brenner BM, Mackenzie HS. Mechanisms underlying renoprotection during renin-angiotensin system blockade. Am J Physiol Renal Physiol 2001;280:F343-F355.

    Google Scholar 

  42. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851-860.

    Google Scholar 

  43. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861-869.

    Google Scholar 

  44. Cao Z, Kelly DJ, Cox A, Casley D, Forbes JM, Martinello P, Dean R, Gilbert RE, Cooper ME. Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney Int 2000;58:2437-2451.

    Google Scholar 

  45. Taal MW, Nenov VD, Wong W, Satyal SR, Sakharova O, Choi JH, Troy JL, Brenner BM. Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone. J Am Soc Nephrol 2001;12:2051-2059.

    Google Scholar 

  46. Heidland A, Sebekova K, Schinzel R. Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis 2001;38:S100-S106.

    Google Scholar 

  47. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988;318:1315-1321.

    Google Scholar 

  48. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 1991;325:836-842.

    Google Scholar 

  49. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'Agati VD. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 2000;11:1656-1666.

    Google Scholar 

  50. Charonis AS, Tsilbary EC. Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes 1992;41(Suppl 2):49-51.

    Google Scholar 

  51. Forbes J, Thallas T, Thomas MC, Founds HW, Burns WC, Jerums G, Cooper ME. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. 2003 FASEB J 2003;17:1762-1764.

    Google Scholar 

  52. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001;280:E685-E694.

    Google Scholar 

  53. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001;108:1853-1863.

    Google Scholar 

  54. Lal MA, Brismar H, Eklof AC, Aperia A. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int 2002;61:2006-2014.

    Google Scholar 

  55. Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 1997;272:16498-16506.

    Google Scholar 

  56. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 1993;143:1699-1712.

    Google Scholar 

  57. Singh R, Barden A, Mori T, Beilin L. Advanced glycation endproducts: A review. Diabetologia 2001;44:129-146.

    Google Scholar 

  58. Miyata T, Wada Y, Cai Z, Iida Y, Horie K, Yasuda Y, Maeda K, Kurokawa K, van Ypersele de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int 1997;51:1170-1181.

    Google Scholar 

  59. Forbes JM, Cooper ME, Thallas V, Burns WC, Thomas MC, Brammar GC, Lee F, Grant SL, Burrell LA, Jerums G, Osicka TM. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 2002;51:3274-3282.

    Google Scholar 

  60. Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker LJ. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci USA 1994;91:9436-9440.

    Google Scholar 

  61. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 1994;91:11704-11708.

    Google Scholar 

  62. Reactive Oxygen Species and Diabetic Nephropathy. Proceedings of the Hyonam Kidney Laboratory, Soon Chun Hyang University International Diabetes Symposium. Seoul, Korea, January 18–19, 2003. J Am Soc Nephrol 2003;14:S209-S296.

    Google Scholar 

  63. Kuroki T, Isshiki K, King GL. Oxidative stress: The lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003;14:S216-S220.

    Google Scholar 

  64. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405-412.

    Google Scholar 

  65. Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, Hirai M, Hirai A, Chiba M, Kasuga S, Akai H, Toyota T. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res Clin Pract 1999;45:161-168.

    Google Scholar 

  66. Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW. Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 2003;14:S211-S215.

    Google Scholar 

  67. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res 2000;86:494-501.

    Google Scholar 

  68. Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 2001;276:1417-1423.

    Google Scholar 

  69. Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM. Vascular superoxide production by NAD(P)H oxidase: Association with endothelial dysfunction and clinical risk factors. Circ Res 2000;86:E85-E90.

    Google Scholar 

  70. Devaraj S, Hirany SV, Burk RF, Jialal I. Divergence between LDL oxidative susceptibility and urinary F(2)-isoprostanes as measures of oxidative stress in type 2 diabetes. Clin Chem 2001;47:1974-1979.

    Google Scholar 

  71. Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC. Increased oxidative stress in experimental renovascular hypertension. Hypertension 2001;37:541-546.

    Google Scholar 

  72. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599-606.

    Google Scholar 

  73. Mauer SM, Steffes MW, Azar S, Brown DM. Effects of sorbinil on glomerular structure and function in long-term-diabetic rats. Diabetes 1989;38:839-846.

    Google Scholar 

  74. Yue DK, Hanwell MA, Satchell PM, Turtle JR. The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 1982;31:789-794.

    Google Scholar 

  75. Robison WG, Jr, Nagata M, Laver N, Hohman TC, Kinoshita JH. Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest Ophthalmol Vis Sci 1989;30:2285-2292.

    Google Scholar 

  76. Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 2003;14:S233-S236.

    Google Scholar 

  77. Steer KA, Sochor M, McLean P. Renal hypertrophy in experimental diabetes. Changes in pentose phosphate pathway activity. Diabetes 1985;34:485-490.

    Google Scholar 

  78. Lee AY, Chung SK, Chung SS. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc Natl Acad Sci USA 1995;92:2780-2784.

    Google Scholar 

  79. Terubayashi H, Sato S, Nishimura C, Kador PF, Kinoshita JH. Localization of aldose and aldehyde reductase in the kidney. Kidney Int 1989;36:843-851.

    Google Scholar 

  80. Ghahary A, Luo JM, Gong YW, Chakrabarti S, Sima AA, Murphy LJ. Increased renal aldose reductase activity, immunoreactivity, and mRNA in streptozocin-induced diabetic rats. Diabetes 1989;38:1067-1071.

    Google Scholar 

  81. Kaneko M, Carper D, Nishimura C, Millen J, Bock M, Hohman TC. Induction of aldose reductase expression in rat kidney mesangial cells and Chinese hamster ovary cells under hypertonic conditions. Exp Cell Res 1990;188:135-140.

    Google Scholar 

  82. Heesom AE, Hibberd ML, Millward A, Demaine AG. Polymorphism in the 5′-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes 1997;46:287-291.

    Google Scholar 

  83. Shah VO, Dorin RI, Sun Y, Braun M, Zager PG. Aldose reductase gene expression is increased in diabetic nephropathy. J Clin Endocrinol Metab 1997;82:2294-2298.

    Google Scholar 

  84. Ranganathan S, Krempf M, Feraille E, Charbonnel B. Short term effect of an aldose reductase inhibitor on urinary albumin excretion rate (UAER) and glomerular filtration rate (GFR) in type 1 diabetic patients with incipient nephropathy. Diabete Metab 1993;19:257-261.

    Google Scholar 

  85. McAuliffe AV, Brooks BA, Fisher EJ, Molyneaux LM, Yue DK. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: Effect on urinary albumin excretion. Nephron 1998;80:277-284.

    Google Scholar 

  86. Sheetz MJ, King GL. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA 2002;288:2579-2588.

    Google Scholar 

  87. Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Dianetologia 1999;42:1271-1281.

    Google Scholar 

  88. Ishii H, Koya D, King GL. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med 1998;76:21-31.

    Google Scholar 

  89. Meier M, King GL. Protein kinase C activation and its pharmacological inhibition in vascular disease. Vasc Med 2000;5:173-185.

    Google Scholar 

  90. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996;272:728-731.

    Google Scholar 

  91. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. Faseb J 2000;14:439-447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dijk, C., Berl, T. Pathogenesis of Diabetic Nephropathy. Rev Endocr Metab Disord 5, 237–248 (2004). https://doi.org/10.1023/B:REMD.0000032412.91984.ec

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000032412.91984.ec

Navigation