Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Understanding the effects of chronic kidney disease on cardiovascular risk: are there lessons to be learnt from healthy kidney donors?

Abstract

Chronic kidney disease (CKD) is now a recognized global public health problem. It is highly prevalent and strongly associated with hypertension and cardiovascular disease (CVD); far more patients with a glomerular filtration rate below 60 ml min−1 per 1.73 m2 will die from cardiovascular causes than progress to end-stage renal disease. A better understanding of the complex mechanisms underlying the development of CVD among CKD patients is required if we are to begin devising therapy to prevent or reverse this process. Observational studies of CVD in CKD are difficult to interpret because renal impairment is almost always accompanied by confounding factors. These include the underlying disease process itself (for example, diabetes mellitus and systemic vasculitis) and the complications of CKD, such as hypertension, anaemia and inflammation. Kidney donors provide an ideal opportunity to study healthy subjects without manifest vascular disease who experience an acute change from having normal to modestly impaired renal function at the time of uninephrectomy. Prospectively examining the cardiovascular consequences of uninephrectomy using donors as a model of CKD may provide useful insight into the pathophysiology of CVD in CKD and, therefore, into how the CVD risk associated with renal impairment might eventually be reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Best PJ, Reddan DN, Berger PB, Szczech LA, McCullough PA, Califf RM . Cardiovascular disease and chronic kidney disease: insights and an update. Am Heart J 2004; 148: 230–242.

    Article  Google Scholar 

  2. Martensson J, Groth S, Rehling M, Gref M . Chromium-51-EDTA clearance in adults with a single-plasma sample. J Nucl Med 1998; 39: 2131–2137.

    CAS  PubMed  Google Scholar 

  3. National Kidney Federation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–S266.

    Google Scholar 

  4. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298: 2038–2047.

    Article  CAS  Google Scholar 

  5. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS . Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003; 41: 1–12.

    Article  Google Scholar 

  6. Schiffrin EL, Lipman ML, Mann JF . Chronic kidney disease: effects on the cardiovascular system. Circulation 2007; 116: 85–97.

    Article  Google Scholar 

  7. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY . Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–1305.

    Article  CAS  Google Scholar 

  8. Kurth T, de Jong PE, Cook NR, Buring JE, Ridker PM . Kidney function and risk of cardiovascular disease and mortality in women: a prospective cohort study. Bmj 2009; 338: b2392.

    Article  Google Scholar 

  9. Di Angelantonio E, Chowdhury R, Sarwar N, Aspelund T, Danesh J, Gudnason V . Chronic kidney disease and risk of major cardiovascular disease and non-vascular mortality: prospective population based cohort study. Bmj 2010; 341: c4986.

    Article  Google Scholar 

  10. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073–2081.

    Article  Google Scholar 

  11. Van Biesen W, De Bacquer D, Verbeke F, Delanghe J, Lameire N, Vanholder R . The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur Heart J 2007; 28: 478–483.

    Article  Google Scholar 

  12. McCullough PA, Jurkovitz CT, Pergola PE, McGill JB, Brown WW, Collins AJ et al. Independent components of chronic kidney disease as a cardiovascular risk state: results from the Kidney Early Evaluation Program (KEEP). Arch Intern Med 2007; 167: 1122–1129.

    Article  CAS  Google Scholar 

  13. Eknoyan G, Lameire N, Barsoum R, Eckardt KU, Levin A, Levin N et al. The burden of kidney disease: improving global outcomes. Kidney Int 2004; 66: 1310–1314.

    Article  Google Scholar 

  14. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 2004; 110: 32–35.

    Article  CAS  Google Scholar 

  15. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 2005; 112: 969–975.

    Article  Google Scholar 

  16. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003; 139: 244–252.

    Article  CAS  Google Scholar 

  17. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM . Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 1981; 241: F85–F93.

    CAS  PubMed  Google Scholar 

  18. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation 2004; 110: 2809–2816.

    Article  CAS  Google Scholar 

  19. UK Transplant Data. Accessed December 2010, at www.uktransplant.org.uk.

  20. British Transplantation Society and The Renal Association. United Kingdom Guidelines for Living Donor Kidney Transplantation. 2nd edn. British Transplantation Society and The Renal Association, 2005.

  21. Baltzan MA, Ahmed S, Baltzan RB, Marshall RP, Thoma EL, Nicol MF . Variations in living donor graft rates by dialysis clinic: effect on outcome and cost of chronic renal failure therapy. Clin Nephrol 1997; 47: 351–355.

    CAS  PubMed  Google Scholar 

  22. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int 1996; 50: 235–242.

    Article  CAS  Google Scholar 

  23. Chin EH, Hazzan D, Edye M, Wisnivesky JP, Herron DM, Ames SA et al. The first decade of a laparoscopic donor nephrectomy program: effect of surgeon and institution experience with 512 cases from 1996 to 2006. J Am Coll Surg 2009; 209: 106–113.

    Article  Google Scholar 

  24. Meier-Kriesche HU, Kaplan B . Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation 2002; 74: 1377–1381.

    Article  Google Scholar 

  25. Terasaki PI, Cecka JM, Gjertson DW, Takemoto S . High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 1995; 333: 333–336.

    Article  CAS  Google Scholar 

  26. Knoll G . Trends in kidney transplantation over the past decade. Drugs 2008; 68 (Suppl 1): 3–10.

    Article  Google Scholar 

  27. Bia MJ, Ramos EL, Danovitch GM, Gaston RS, Harmon WE, Leichtman AB et al. Evaluation of living renal donors. The current practice of US transplant centers. Transplantation 1995; 60: 322–327.

    Article  CAS  Google Scholar 

  28. Krohn AG, Ogden DA, Holmes JH . Renal function in 29 healthy adults before and after nephrectomy. JAMA 1966; 196: 322–324.

    Article  CAS  Google Scholar 

  29. Anderson RG, Bueschen AJ, Lloyd LK, Dubovsky EV, Burns JR . Short-term and long-term changes in renal function after donor nephrectomy. J Urol 1991; 145: 11–13.

    Article  CAS  Google Scholar 

  30. Saran R, Marshall SM, Madsen R, Keavey P, Tapson JS . Long-term follow-up of kidney donors: a longitudinal study. Nephrol Dial Transplant 1997; 12: 1615–1621.

    Article  CAS  Google Scholar 

  31. Garg AX, Muirhead N, Knoll G, Yang RC, Prasad GV, Thiessen-Philbrook H et al. Proteinuria and reduced kidney function in living kidney donors: a systematic review, meta-analysis, and meta-regression. Kidney Int 2006; 70: 1801–1810.

    Article  CAS  Google Scholar 

  32. Barri YM, Parker III T, Daoud Y, Glassock RJ . Definition of chronic kidney disease after uninephrectomy in living donors: what are the implications? Transplantation 2010; 90: 575–580.

    Article  Google Scholar 

  33. Poggio ED, Wang X, Greene T, Van Lente F, Hall PM . Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 2005; 16: 459–466.

    Article  Google Scholar 

  34. Tan JC, Ho B, Busque S, Blouch K, Derby G, Efron B et al. Imprecision of creatinine-based GFR estimates in uninephric kidney donors. Clin J Am Soc Nephrol 2010; 5: 497–502.

    Article  Google Scholar 

  35. Ibrahim HN, Foley R, Tan L, Rogers T, Bailey RF, Guo H et al. Long-term consequences of kidney donation. N Engl J Med 2009; 360: 459–469.

    Article  CAS  Google Scholar 

  36. Lentine KL, Schnitzler MA, Xiao H, Saab G, Salvalaggio PR, Axelrod D et al. Racial variation in medical outcomes among living kidney donors. N Engl J Med 2010; 363: 724–732.

    Article  CAS  Google Scholar 

  37. NICE. Clinical Guidelines CG73. Early identification and management of chronic kidney disease in adults in primary and secondary care. http://www.nice.org.uk/CG73 (accessed September 2008).

  38. Gossmann J, Wilhelm A, Kachel HG, Jordan J, Sann U, Geiger H et al. Long-term consequences of live kidney donation follow-up in 93% of living kidney donors in a single transplant center. Am J Transplant 2005; 5: 2417–2424.

    Article  Google Scholar 

  39. Hakim RM, Goldszer RC, Brenner BM . Hypertension and proteinuria: long-term sequelae of uninephrectomy in humans. Kidney Int 1984; 25: 930–936.

    Article  CAS  Google Scholar 

  40. Chavers BM, Michael AF, Weiland D, Najarian JS, Mauer SM . Urinary albumin excretion in renal transplant donors. Am J Surg 1985; 149: 343–346.

    Article  CAS  Google Scholar 

  41. Kasiske BL, Ma JZ, Louis TA, Swan SK . Long-term effects of reduced renal mass in humans. Kidney Int 1995; 48: 814–819.

    Article  CAS  Google Scholar 

  42. Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook H, Yang RC et al. Meta-analysis: risk for hypertension in living kidney donors. Ann Intern Med 2006; 145: 185–196.

    Article  Google Scholar 

  43. Mjoen G, Midtvedt K, Holme I, Øyen O, Fauchald P, Bergrem H et al. One- and five-year follow-ups on blood pressure and renal function in kidney donors. Transpl Int 2010; 24: 74–77.

    Google Scholar 

  44. Garg AX, Prasad GV, Thiessen-Philbrook HR, Ping L, Melo M, Gibney EM et al. Cardiovascular disease and hypertension risk in living kidney donors: an analysis of health administrative data in Ontario, Canada. Transplantation 2008; 86: 399–406.

    Article  Google Scholar 

  45. Anderson CF, Velosa JA, Frohnert PP, Torres VE, Offord KP, Vogel JP et al. The risks of unilateral nephrectomy: status of kidney donors 10–20 years postoperatively. Mayo Clin Proc 1985; 60: 367–374.

    Article  CAS  Google Scholar 

  46. Rizvi SA, Naqvi SA, Jawad F, Ahmed E, Asghar A, Zafar MN et al. Living kidney donor follow-up in a dedicated clinic. Transplantation 2005; 79: 1247–1251.

    Article  Google Scholar 

  47. Nogueira JM, Weir MR, Jacobs S, Haririan A, Breault D, Klassen D et al. A study of renal outcomes in African American living kidney donors. Transplantation 2009; 88: 1371–1376.

    Article  Google Scholar 

  48. Storsley LJ, Young A, Rush DN, Nickerson PW, Ho J, Suon V et al. Long-term medical outcomes among Aboriginal living kidney donors. Transplantation 2010; 90: 401–406.

    Article  Google Scholar 

  49. Sui Y, Zhao HL, Ma RC, Ho CS, Kong AP, Lai FM et al. Pancreatic islet beta-cell deficit and glucose intolerance in rats with uninephrectomy. Cell Mol Life Sci 2007; 64: 3119–3128.

    Article  CAS  Google Scholar 

  50. Martin FL, Huntley BK, Korinek J, Harders GE, Oehler E, Chen HH et al. New insights into the kidney-heart connection: mild renal insufficiency induces cardiac fibrosis and diastolic dysfunction followed by late systolic impairment. Circulation 2008; 118: S334–S335.

    Google Scholar 

  51. Prasad GV, Lipszyc D, Huang M, Nash MM, Rapi L . A prospective observational study of changes in renal function and cardiovascular risk following living kidney donation. Transplantation 2008; 86: 1315–1318.

    Article  Google Scholar 

  52. Ibrahim HN, Kukla A, Cordner G, Bailey R, Gillingham K, Matas AJ . Diabetes after kidney donation. Am J Transplant 2010; 10: 331–337.

    Article  CAS  Google Scholar 

  53. Bahous SA, Stephan A, Blacher J, Safar ME . Aortic stiffness, living donors, and renal transplantation. Hypertension 2006; 47: 216–221.

    Article  CAS  Google Scholar 

  54. Abhayaratna WP, Yew SC, Talaulikar G . Effect of reduced renal function after voluntary kidney donation on cardiac structure and function and arterial stiffness. Circulation 2010; 122: A20745.

    Google Scholar 

  55. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 2588–2605.

    Article  Google Scholar 

  56. Chue CD, Townend JN, Steeds RP, Ferro CJ . Arterial stiffness in chronic kidney disease: causes and consequences. Heart 2010; 96: 817–823.

    Article  Google Scholar 

  57. Fehrman-Ekholm I, Elinder CG, Stenbeck M, Tyden G, Groth CG . Kidney donors live longer. Transplantation 1997; 64: 976–978.

    Article  CAS  Google Scholar 

  58. Segev DL, Muzaale AD, Caffo BS, Mehta SH, Singer AL, Taranto SE et al. Perioperative mortality and long-term survival following live kidney donation. JAMA 2010; 303: 959–966.

    Article  CAS  Google Scholar 

  59. Lindeman RD, Tobin J, Shock NW . Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985; 23: 278–285.

    Article  Google Scholar 

Download references

Acknowledgements

Dr WEM is supported by a British Heart Foundation Clinical Research Training Fellowship Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W E Moody.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moody, W., Chue, C., Inston, N. et al. Understanding the effects of chronic kidney disease on cardiovascular risk: are there lessons to be learnt from healthy kidney donors?. J Hum Hypertens 26, 141–148 (2012). https://doi.org/10.1038/jhh.2011.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2011.46

Keywords

This article is cited by

Search

Quick links