Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy

Abstract

Arrhythmogenic right ventricular dysplasia/cardiomyopathy is an inherited cardiomyopathy estimated to affect approximately 1 in 5,000 individuals. Cardinal manifestations include right ventricular enlargement and dysfunction, fibrofatty replacement of myocytes in the right ventricle, characteristic electrocardiographic abnormalities, and ventricular arrhythmia most commonly arising from the right ventricle. The disease is frequently familial and typically involves autosomal dominant transmission with low penetrance and variable expressivity. Approximately 50% of symptomatic individuals harbor a mutation in one of the five major components of the cardiac desmosome. Nevertheless, other genetic modifiers and environmental factors complicate the clinical management of mutation carriers as well as counseling of their relatives. This Review summarizes the known genetic mutations associated with arrhythmogenic right ventricular dysplasia/cardiomyopathy, describes possible origins of recurrent mutations, presents theories on the pathogenesis of disease following a mutation, and discusses the current issues surrounding clinical use of genetic analysis in the assessment of individuals with this condition.

Key Points

  • Mutation in genes encoding any of the five major components of the cardiac desmosome—PKP2 (encoding plakophilin-2), DSG2 (encoding desmoglein-2), DSP (encoding desmoplakin), DSC2 (encoding desmocollin-2), and JUP (encoding junctional plakoglobin)—can result in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C)

  • Approximately 50% of individuals with ARVD/C who have undergone full sequence analysis of these desmosome genes have a single heterozygous mutation identified, though a few cases of individuals with homozygous or compound heterozygous mutations have also been described

  • ARVD/C segregates in families with both incomplete penetrance and variable expressivity; clinical screening of family members is recommended, particularly among those recognized to share a genetic predisposition to ARVD/C

  • Owing to the age-dependent onset of ARVD/C, repeat clinical screening is recommended at 2- to 3-year intervals from the age of 12 years in the absence of a known mutation, to help target family members at highest risk; in families with earlier onset disease or sudden cardiac death in children, earlier clinical screening should be performed

  • With the recent emergence of clinical genetic testing for ARVD/C, genetic counseling is strongly advised for individuals with ARVD/C and their family members

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cardiac desmosome and proposed roles of the desmosome in (A) supporting structural stability through cell–cell adhesion, (B) regulating transcription of genes involved in adipogenesis and apoptosis, and maintaining proper electrical conductivity through regulation of (C) gap junctions and (D) calcium homeostasis.
Figure 2: Schematic of the five desmosomal proteins in which ARVD/C mutations have been identified and published.
Figure 3: Tallies of the types of unique mutations found in each of the five desmosomal genes mutated in arrhythmogenic right ventricular dysplasia/cardiomyopathy.

Similar content being viewed by others

References

  1. McKenna WJ et al. (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 71: 215–218

    Article  CAS  Google Scholar 

  2. Uhl HS (1952) A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp 91: 197–209

    CAS  PubMed  Google Scholar 

  3. Gerlis LM et al. (1993) Dysplastic conditions of the right ventricular myocardium: Uhl's anomaly vs arrhythmogenic right ventricular dysplasia. Br Heart J 69: 142–150

    Article  CAS  Google Scholar 

  4. Frank R et al. (1978) Electrocardiology of 4 cases of right ventricular dysplasia inducing arrhythmia [French]. Arch Mal Coeur Vaiss 71: 963–972

    CAS  PubMed  Google Scholar 

  5. Nava A et al. (1987) A polymorphic form of familial arrhythmogenic right ventricular dysplasia. Am J Cardiol 59: 1405–1409

    Article  CAS  Google Scholar 

  6. Nava A et al. (1988) Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol 12: 1222–1228

    Article  CAS  Google Scholar 

  7. Marcus FI et al. (1982) Right ventricular dysplasia: a report of 24 adult cases. Circulation 65: 384–398

    Article  CAS  Google Scholar 

  8. Coonar AS et al. (1998) Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation 97: 2049–2058

    Article  CAS  Google Scholar 

  9. McKoy G et al. (2000) Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355: 2119–2124

    Article  CAS  Google Scholar 

  10. Protonotarios N et al. (2001) Genotype–phenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J Am Coll Cardiol 38: 1477–1484

    Article  CAS  Google Scholar 

  11. Asimaki A et al. (2007) A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 81: 964–973

    Article  CAS  Google Scholar 

  12. Getsios S et al. (2004) Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 5: 271–281

    Article  CAS  Google Scholar 

  13. Bierkamp C et al. (1996) Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 180: 780–785

    Article  CAS  Google Scholar 

  14. Ruiz P et al. (1996) Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 135: 215–225

    Article  CAS  Google Scholar 

  15. Kirchhof P et al. (2006) Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114: 1799–1806

    Article  Google Scholar 

  16. Rao BH et al. (1996) Familial occurrence of a rare combination of dilated cardiomyopathy with palmoplantar keratoderma and curly hair. Indian Heart J 48: 161–162

    CAS  PubMed  Google Scholar 

  17. Carvajal-Huerta L (1998) Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J Am Acad Dermatol 39: 418–421

    Article  CAS  Google Scholar 

  18. Norgett EE et al. (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9: 2761–2766

    Article  CAS  Google Scholar 

  19. Alcalai R et al. (2003) A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 42: 319–327

    Article  CAS  Google Scholar 

  20. Norgett EE . et al. (2006) Early death from cardiomyopathy in a family with autosomal dominant striate palmoplantar keratoderma and woolly hair associated with a novel insertion mutation in desmoplakin. 126: 1651–1654

  21. Uzumcu A et al. (2006) Loss of desmoplakin isoform I causes early onset cardiomyopathy and heart failure in a Naxos-like syndrome. J Med Genet 43: e5

    Article  CAS  Google Scholar 

  22. Bauce B et al. (2005) Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J 26: 1666–1675

    Article  CAS  Google Scholar 

  23. Rampazzo A et al. (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71: 1200–1206

    Article  CAS  Google Scholar 

  24. Norman M et al. (2005) Novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy. Circulation 112: 636–642

    Article  CAS  Google Scholar 

  25. Jonkman MF et al. (2005) Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am J Hum Genet 77: 653–660

    Article  CAS  Google Scholar 

  26. Whittock NV et al. (2002) Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J Invest Dermatol 118: 232–238

    Article  CAS  Google Scholar 

  27. Smith EA and Fuchs E (1998) Defining the interactions between intermediate filaments and desmosomes. J Cell Biol 141: 1229–1241

    Article  CAS  Google Scholar 

  28. Gallicano GI et al. (1998) Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J Cell Biol 143: 2009–2022

    Article  CAS  Google Scholar 

  29. Gallicano GI et al. (2001) Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128: 929–941

    CAS  PubMed  Google Scholar 

  30. Garcia-Gras E et al. (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116: 2012–2021

    Article  CAS  Google Scholar 

  31. Yang Z et al. (2006) Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res 99: 646–655

    Article  CAS  Google Scholar 

  32. Grossmann KS et al. (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167: 149–160

    Article  CAS  Google Scholar 

  33. Gerull B et al. (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36: 1162–1164

    Article  CAS  Google Scholar 

  34. Dalal D et al. (2006) Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation 113: 1641–1649

    Article  CAS  Google Scholar 

  35. Syrris P et al. (2006) Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy. Circulation 113: 356–364

    Article  CAS  Google Scholar 

  36. van Tintelen JP et al. (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113: 1650–1658

    Article  CAS  Google Scholar 

  37. Awad MM et al. (2006) Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2. Hum Mutat 27: 1157

    Article  Google Scholar 

  38. Lahtinen AM et al. (2007) Plakophilin-2 missense mutations in arrhythmogenic right ventricular cardiomyopathy. Int J Cardiol [10.1016/j.ijcard.2007.03.137]

  39. Dalal D et al. (2006) Penetrance of mutations in plakophilin-2 among families with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 48: 1416–1424

    Article  CAS  Google Scholar 

  40. Nava A et al. (2000) Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 36: 2226–2233

    Article  CAS  Google Scholar 

  41. Hamid MS et al. (2002) Prospective evaluation of relatives for familial arrhythmogenic right ventricular cardiomyopathy/dysplasia reveals a need to broaden diagnostic criteria. J Am Coll Cardiol 40: 1445–1450

    Article  Google Scholar 

  42. Bonne S et al. (2000) Assignment of the plakophilin-2 gene (PKP2) and a plakophilin-2 pseudogene (PKP2P1) to human chromosome bands 12p11 and 12p13, respectively, by in situ hybridization. Cytogenet Cell Genet 88: 286–287

    Article  CAS  Google Scholar 

  43. Schwarz MA et al. (1990) Desmosomes and hemidesmosomes: constitutive molecular components. Annu Rev Cell Biol 6: 461–491

    Article  CAS  Google Scholar 

  44. Awad MM et al. (2006) DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 79: 136–142

    Article  CAS  Google Scholar 

  45. Pilichou K et al. (2006) Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113: 1171–1179

    Article  CAS  Google Scholar 

  46. Syrris P et al. (2007) Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy: a genotype-phenotype characterization of familial disease. Eur Heart J 28: 581–588

    Article  CAS  Google Scholar 

  47. Sen-Chowdhry S et al. (2007) Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115: 1710–1720

    Article  Google Scholar 

  48. Eshkind L et al. (2002) Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81: 592–598

    Article  CAS  Google Scholar 

  49. Biedermann K et al. (2005) Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J Pathol 207: 199–206

    Article  CAS  Google Scholar 

  50. Yashiro M et al. (2006) Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur J Cancer 42: 2397–2403

    Article  CAS  Google Scholar 

  51. Heuser A et al. (2006) Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 79: 1081–1088

    Article  CAS  Google Scholar 

  52. Syrris P et al. (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79: 978–984

    Article  CAS  Google Scholar 

  53. Beffagna G et al. (2007) Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet 8: 65

    Article  Google Scholar 

  54. Priori SG et al. (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103: 196–200

    Article  CAS  Google Scholar 

  55. Tiso N et al. (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10: 189–194

    Article  CAS  Google Scholar 

  56. Rampazzo A et al. (1995) A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum Mol Genet 4: 2151–2154

    Article  CAS  Google Scholar 

  57. Beffagna G et al. (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65: 366–373

    Article  CAS  Google Scholar 

  58. Ahmad F et al. (1998) Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 98: 2791–2795

    Article  CAS  Google Scholar 

  59. Li D et al. (2000) The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am J Hum Genet 66: 148–156

    Article  CAS  Google Scholar 

  60. Rampazzo A et al. (1997) ARVD4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 45: 259–263

    Article  CAS  Google Scholar 

  61. Severini GM et al. (1996) A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 31: 193–200

    Article  CAS  Google Scholar 

  62. Hodgkinson KA et al. (2005) The impact of implantable cardioverter-defibrillator therapy on survival in autosomal-dominant arrhythmogenic right ventricular cardiomyopathy (ARVD5). J Am Coll Cardiol 45: 400–408

    Article  Google Scholar 

  63. Simcha I et al. (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141: 1433–1448

    Article  CAS  Google Scholar 

  64. Ross SE et al. (2000) Inhibition of adipogenesis by Wnt signaling. Science 289: 950–953

    Article  CAS  Google Scholar 

  65. Nagata M et al. (2000) Apoptotic cell death in arrhythmogenic right ventricular cardiomyopathy: a comparative study with idiopathic sustained ventricular tachycardia. Jpn Heart J 41: 733–741

    Article  CAS  Google Scholar 

  66. Yamaji K et al. (2005) Apoptotic myocardial cell death in the setting of arrhythmogenic right ventricular cardiomyopathy. Acta Cardiol 60: 465–470

    Article  Google Scholar 

  67. Mallat Z et al. (1996) Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335: 1190–1196

    Article  CAS  Google Scholar 

  68. Hakimelahi S et al. (2000) Plakoglobin regulates the expression of the anti-apoptotic protein BCL-2. J Biol Chem 275: 10905–10911

    Article  CAS  Google Scholar 

  69. Longo KA et al. (2002) Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem 277: 38239–38244

    Article  CAS  Google Scholar 

  70. Shaw RM et al. (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128: 547–560

    Article  CAS  Google Scholar 

  71. Oxford EM et al. (2007) Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res 101: 703–711

    Article  CAS  Google Scholar 

  72. Saffitz JE et al. (2007) Remodeling of gap junctions in ischemic and nonischemic forms of heart disease. J Membr Biol 218: 65–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding from the National Institutes of Health (HL088072 to DPJ) and the France-Merrick Foundation. We would also like to acknowledge the Johns Hopkins ARVD Program (http://www.arvd.com) which is supported by the Bogle Foundation, the Campanella family, and the Wilmerding Endowments. Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P Judge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, M., Calkins, H. & Judge, D. Mechanisms of Disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Rev Cardiol 5, 258–267 (2008). https://doi.org/10.1038/ncpcardio1182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio1182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing