Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integration of coronary anatomy and myocardial perfusion imaging

Abstract

Advances in cardiovascular imaging have resulted in the development of multiple noninvasive techniques to evaluate myocardial perfusion and coronary anatomy, each of which has unique strengths and limitations. For example, CT angiography can directly visualize the presence of atherosclerosis, but the hemodynamic effect of many lesions identified by this technique is unknown. Alternatively, myocardial perfusion imaging enables a physiological assessment, but it may underestimate the extent of atherosclerosis in patients with multivessel disease. Dual-modality simultaneous imaging or multimodal sequential imaging techniques facilitate integration of information on both myocardial perfusion and coronary anatomy, and thus have the potential to improve diagnostic and prognostic evaluation, which could translate into improved care of patients. This Review discusses the strengths and limitations of the currently available individual noninvasive techniques for imaging coronary anatomy and myocardial perfusion. Approaches to integration of these imaging modalities are described, followed by an exploration of the clinical utility and future directions of hybrid imaging.

Key Points

  • Cardiac CT can directly visualize the presence of atherosclerosis and, if images are of sufficient quality, determine whether obstructive anatomical stenosis is present

  • Cardiac CT is an excellent technique for excluding obstructive coronary artery disease, but has a limited capacity to identify the presence of ischemia

  • Each of the techniques used for myocardial perfusion imaging has specific strengths and limitations, but PET is currently considered to be the most robust method for identifying and quantifying ischemia

  • The combination of coronary imaging and myocardial perfusion imaging offers many advantages, including the potential to improve diagnosis and predictions of prognosis

  • Although use of hybrid imaging techniques may improve therapeutic decision-making, issues relating to selection of patients, radiation exposure, and cost-effectiveness remain to be addressed

  • Rapid technical advances will further improve multimodality imaging and will pave the way for targeted molecular imaging

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of images obtained by techniques used to assess coronary anatomy and myocardial perfusion.
Figure 2: Images obtained by cardiac CT.
Figure 3: Frequency of ischemia in vessels with ≥50% stenosis by CT angiography.
Figure 4: CT myocardial perfusion images.
Figure 5: PET and CT hybrid images obtained from a 60-year-old man with diabetes and hypertension undergoing investigation for chest pain.
Figure 6: CT and MRI hybrid image.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480–486 (2009).

    PubMed  Google Scholar 

  2. Agatston, A. S. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990).

    CAS  PubMed  Google Scholar 

  3. Gerber, T. C. et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119, 1056–1065 (2009).

    PubMed  Google Scholar 

  4. Alexopoulos, N. & Raggi, P. Calcification in atherosclerosis. Nat. Rev. Cardiol. 6, 681–688 (2009).

    CAS  PubMed  Google Scholar 

  5. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008).

    CAS  PubMed  Google Scholar 

  6. Sarwar, A. et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc. Imaging 2, 675–688 (2009).

    PubMed  Google Scholar 

  7. Greenland, P. et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). J. Am. Coll. Cardiol. 49, 378–402 (2007).

    PubMed  Google Scholar 

  8. Rosen, B. D. et al. Relationship between baseline coronary calcium score and demonstration of coronary artery stenoses during follow-up. MESA Multi-Ethic Study of Atherosclerosis. JACC Cardiovasc. Imaging 2, 1175–1183 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Arad, Y., Spadaro, L. A., Roth, M., Newstein, D. & Guerci, A. D. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St Francis Heart Study randomized clinical trial. J. Am. Coll. Cardiol. 46, 166–172 (2005).

    CAS  PubMed  Google Scholar 

  10. Taylor, A. J. et al. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J. Am. Coll. Cardiol. 51, 1337–1341 (2008).

    PubMed  Google Scholar 

  11. Wong, N. D. et al. Does coronary artery screening by electron beam computed tomography motivate potentially beneficial lifestyle behaviors? Am. J. Cardiol. 78, 1220–1223 (1996).

    CAS  PubMed  Google Scholar 

  12. Thompson, R. C. et al. Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J. Nucl. Cardiol. 12, 392–400 (2005).

    PubMed  Google Scholar 

  13. Bamberg, F. et al. Predictors of image quality of coronary computed tomography in the acute care setting of patients with chest pain. Eur. J. Radiol. doi:10.1016/j.ejrad.2009.03.001.

    PubMed  Google Scholar 

  14. Di Carli, M. F. et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET–CT imaging. J. Nucl. Cardiol. 14, 799–809 (2007).

    PubMed  Google Scholar 

  15. Gaemperli, O. et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 248, 414–423 (2008).

    PubMed  Google Scholar 

  16. Hacker, M. et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur. J. Nucl. Med. Mol. Imaging 34, 4–10 (2007).

    PubMed  Google Scholar 

  17. Hacker, M. et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J. Nucl. Med. 46, 1294–1300 (2005).

    PubMed  Google Scholar 

  18. Rispler, S. et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J. Am. Coll. Cardiol. 49, 1059–1067 (2007).

    PubMed  Google Scholar 

  19. Schuijf, J. D. et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J. Am. Coll. Cardiol. 48, 2508–2514 (2006).

    PubMed  Google Scholar 

  20. Budoff, M. J. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 52, 1724–1732 (2008).

    PubMed  Google Scholar 

  21. Meijboom, W. B. et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J. Am. Coll. Cardiol. 52, 2135–2144 (2008).

    PubMed  Google Scholar 

  22. Miller, J. M. et al. Diagnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med. 359, 2324–2336 (2008).

    CAS  PubMed  Google Scholar 

  23. Leber, A. W. et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J. Am. Coll. Cardiol. 47, 672–677 (2006).

    PubMed  Google Scholar 

  24. Raff, G. L., Gallagher, M. J., O'Neill, W. W. & Goldstein, J. A. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J. Am. Coll. Cardiol. 46, 552–557 (2005).

    PubMed  Google Scholar 

  25. Meijboom, W. B. et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J. Am. Coll. Cardiol. 52, 636–643 (2008).

    PubMed  Google Scholar 

  26. Nagel, E., Lima, J. A., George, R. T. & Kramer, C. M. Newer methods for noninvasive assessment of myocardial perfusion: cardiac magnetic resonance or cardiac computed tomography? JACC Cardiovasc. Imaging 2, 656–660 (2009).

    PubMed  Google Scholar 

  27. Klocke, F. J. et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J. Am. Coll. Cardiol. 42, 1318–1333 (2003).

    PubMed  Google Scholar 

  28. Rozanski, A. et al. The declining specificity of exercise radionuclide ventriculography. N. Engl. J. Med. 309, 518–522 (1983).

    CAS  PubMed  Google Scholar 

  29. Hachamovitch, R. & Di Carli, M. F. Methods and limitations of assessing new noninvasive tests: part I: anatomy-based validation of noninvasive testing. Circulation 117, 2684–2690 (2008).

    PubMed  Google Scholar 

  30. Berman, D. S. & Hachamovitch, R. Risk assessment in patients with stable coronary artery disease: incremental value of nuclear imaging. J. Nucl. Cardiol. 3 (Pt 2), S41–S49 (1996).

    CAS  PubMed  Google Scholar 

  31. Hachamovitch, R. & Di Carli, M. F. Methods and limitations of assessing new noninvasive tests. Part II: outcomes-based validation and reliability assessment of noninvasive testing. Circulation 117, 2793–2801 (2008).

    PubMed  Google Scholar 

  32. Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I. & Berman, D. S. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J. Am. Coll. Cardiol. 45, 722–729 (2005).

    PubMed  Google Scholar 

  33. Hachamovitch, R. et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J. Am. Coll. Cardiol. 41, 1329–1340 (2003).

    PubMed  Google Scholar 

  34. Al-Mallah, M. H., Hachamovitch, R., Dorbala, S. & Di Carli, M. Incremental prognostic value of myocardial perfusion imaging in patients referred to stress single-photon emission computed tomography with renal dysfunction. Circ. Cardiovasc. Imaging 2, 429–436 (2009).

    PubMed  Google Scholar 

  35. Giri, S. et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 105, 32–40 (2002).

    PubMed  Google Scholar 

  36. Hakeem, A. et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation 118, 2540–2549 (2008).

    PubMed  Google Scholar 

  37. Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I. & Berman, D. S. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107, 2900–2907 (2003).

    PubMed  Google Scholar 

  38. Shaw, L. J. et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) multicenter study group. J. Am. Coll. Cardiol. 33, 661–669 (1999).

    CAS  PubMed  Google Scholar 

  39. Berman, D. S. et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J. Nucl. Cardiol. 14, 521–528 (2007).

    PubMed  Google Scholar 

  40. Bengel, F. M., Higuchi, T., Javadi, M. S. & Lautamäki, R. Cardiac positron emission tomography. J. Am. Coll. Cardiol. 54, 1–15 (2009).

    PubMed  Google Scholar 

  41. Knesaurek, K., Machac, J., Krynyckyi, B. R. & Almeida, O. D. Comparison of 2-dimensional and 3-dimensional 82Rb myocardial perfusion PET imaging. J. Nucl. Med. 44, 1350–1356 (2003).

    PubMed  Google Scholar 

  42. Bateman, T. M. et al. Diagnostic accuracy of rest/stress ECG-gated 82Rb myocardial perfusion PET: comparison with ECG-gated 99mTc-sestamibi SPECT. J. Nucl. Cardiol. 13, 24–33 (2006).

    PubMed  Google Scholar 

  43. Einstein, A. J., Moser, K. W., Thompson, R. C., Cerqueira, M. D. & Henzlova, M. J. Radiation dose to patients from cardiac diagnostic imaging. Circulation 116, 1290–1305 (2007).

    PubMed  Google Scholar 

  44. Di Carli, M. F. et al. Clinical myocardial perfusion PET/CT. J. Nucl. Med. 48, 783–793 (2007).

    PubMed  Google Scholar 

  45. Dorbala, S. et al. Incremental prognostic value of gated 82Rb-positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc. Imaging 2, 846–854 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Marwick, T. H., Shan, K., Patel, S., Go, R. T. & Lauer, M. S. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am. J. Cardiol. 80, 865–870 (1997).

    CAS  PubMed  Google Scholar 

  47. Yoshinaga, K. et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J. Am. Coll. Cardiol. 48, 1029–1039 (2006).

    PubMed  Google Scholar 

  48. Dorbala, S. et al. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J. Nucl. Med. 48, 349–358 (2007).

    PubMed  Google Scholar 

  49. Parkash, R. et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J. Nucl. Cardiol. 11, 440–449 (2004).

    CAS  PubMed  Google Scholar 

  50. Kribben, A. et al. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J. Am. Coll. Cardiol. 53, 1621–1628 (2009).

    CAS  PubMed  Google Scholar 

  51. Nandalur, K. R., Dwamena, B. A., Choudhri, A. F., Nandalur, M. R. & Carlos, R. C. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J. Am. Coll. Cardiol. 50, 1343–1353 (2007).

    PubMed  Google Scholar 

  52. Schwitter, J. et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicenter, multivendor, randomized trial. Eur. Heart J. 29, 480–489 (2008).

    PubMed  Google Scholar 

  53. Gerber, B. L. et al. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J. Cardiovasc. Magn. Reson. 10, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. Blankstein, R., Rogers, I. S. & Cury, R. C. Practical tips and tricks in cardiovascular computed tomography: diagnosis of myocardial infarction. J. Cardiovasc. Comput. Tomogr. 3, 104–111 (2009).

    PubMed  Google Scholar 

  55. Blankstein, R. et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J. Am. Coll. Cardiol. 54, 1072–1084 (2009).

    PubMed  Google Scholar 

  56. George, R. T. et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ. Cardiovasc. Imaging 2, 174–182 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Achenbach, S. Stress computed tomography myocardial perfusion: steps, questions, and layers. J. Am. Coll. Cardiol. 54, 1085–1087 (2009).

    PubMed  Google Scholar 

  58. le Polain de Waroux, J. B. et al. Combined coronary and late-enhanced multidetector-computed tomography for delineation of the etiology of left ventricular dysfunction: comparison with coronary angiography and contrast-enhanced cardiac magnetic resonance imaging. Eur. Heart J. 29, 2544–2551 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Schuleri, K. H., George, R. T. & Lardo, A. C. Applications of cardiac multidetector CT beyond coronary angiography. Nat. Rev. Cardiol. 6, 699–710 (2009).

    PubMed  Google Scholar 

  60. van Werkhoven, J. M. et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 53, 623–632 (2009).

    PubMed  Google Scholar 

  61. Di Carli, M. F. & Hachamovitch, R. Hybrid PET/CT is greater than the sum of its parts. J. Nucl. Cardiol. 15, 118–122 (2008).

    PubMed  Google Scholar 

  62. Gaemperli, O. et al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J. Nucl. Med. 48, 696–703 (2007).

    PubMed  Google Scholar 

  63. Berman, D. S. et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J. Am. Coll. Cardiol. 44, 923–930 (2004).

    CAS  PubMed  Google Scholar 

  64. He, Z. X. et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 101, 244–251 (2000).

    CAS  PubMed  Google Scholar 

  65. Schenker, M. P. et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 117, 1693–1700 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Uebleis, C. et al. Stable coronary artery disease: prognostic value of myocardial perfusion SPECT in relation to coronary calcium scoring—long-term follow-up. Radiology 252, 682–690 (2009).

    PubMed  Google Scholar 

  67. Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  68. Masood, Y. et al. Clinical validation of SPECT attenuation correction using X-ray computed tomography-derived attenuation maps: multicenter clinical trial with angiographic correlation. J. Nucl. Cardiol. 12, 676–686 (2005).

    PubMed  Google Scholar 

  69. Malkerneker, D. et al. CT-based attenuation correction versus prone imaging to decrease equivocal interpretations of rest/stress 99mTc-tetrofosmin SPECT MPI. J. Nucl. Cardiol. 14, 314–323 (2007).

    PubMed  Google Scholar 

  70. Gould, K. L. et al. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J. Nucl. Med. 48, 1112–1121 (2007).

    PubMed  Google Scholar 

  71. Goetze, S. & Wahl, R. L. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J. Nucl. Cardiol. 14, 200–206 (2007).

    PubMed  Google Scholar 

  72. McQuaid, S. J. & Hutton, B. F. Sources of attenuation–correction artifacts in cardiac PET/CT and SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 35, 1117–1123 (2008).

    PubMed  Google Scholar 

  73. Slomka, P. J. et al. Comparison of myocardial perfusion 82Rb PET performed with CT- and transmission CT-based attenuation correction. J. Nucl. Med. 49, 1992–1998 (2008).

    PubMed  Google Scholar 

  74. Santana, C. A. et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J. Nucl. Cardiol. 16, 201–211 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Blankstein, R. et al. Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am. J. Cardiol. 103, 1168–1173 (2009).

    PubMed  Google Scholar 

  76. Feuchtner, G. M. et al. Radiation dose reduction by using 100 kV tube voltage in cardiac 64-slice computed tomography: a comparative study. Eur. J. Radiol. doi:10.1016/j.ejrad.2009.07.012.

    PubMed  Google Scholar 

  77. Hausleiter, J. et al. Estimated radiation dose associated with cardiac CT angiography. JAMA 301, 500–507 (2009).

    CAS  PubMed  Google Scholar 

  78. Hsieh, J., Londt, J., Vass, M., Li, J., Tang, X. & Okerlund, D. Step-and-shoot data acquisition and reconstruction for cardiac X-ray computed tomography. Med. Phys. 33, 4236–4248 (2006).

    PubMed  Google Scholar 

  79. Husmann, L. et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur. Heart J. 29, 191–197 (2008).

    PubMed  Google Scholar 

  80. Abidov, A. et al. Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J. Nucl. Cardiol. 16, 701–713 (2009).

    PubMed  Google Scholar 

  81. Gaemperli, O. et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur. J. Nucl. Med. Mol. Imaging 34, 1162–1171 (2007).

    PubMed  Google Scholar 

  82. Namdar, M. et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J. Nucl. Med. 46, 930–935 (2005).

    PubMed  Google Scholar 

  83. Kaufmann, P. A. & Gaemperli, O. Combining CT and nuclear: a winning hybrid team. J. Nucl. Cardiol. 16, 170–172 (2009).

    PubMed  Google Scholar 

  84. Rybicki, F. J. et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int. J. Cardiovasc. Imaging 24, 535–546 (2008).

    PubMed  Google Scholar 

  85. Min, J. K., Swaminathan, R. V., Vass, M., Gallagher, S. & Weinsaft, J. W. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J. Cardiovasc. Comput. Tomogr. 3, 246–251 (2009).

    PubMed  Google Scholar 

  86. Patton, J. A., Slomka, P. J., Germano, G. & Berman, D. S. Recent technologic advances in nuclear cardiology. J. Nucl. Cardiol. 14, 501–513 (2007).

    PubMed  Google Scholar 

  87. Rudd, J. H. et al. Imaging atherosclerotic plaque inflammation with 18F-fluorodeoxyglucose positron emission tomography. Circulation 105, 2708–2711 (2002).

    CAS  PubMed  Google Scholar 

  88. Nahrendorf, M. et al. Nanoparticle PET–CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    CAS  PubMed  Google Scholar 

  89. Nekolla, S. G., Martinez-Moeller, A. & Saraste, A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur. J. Nucl. Med. Mol. Imaging 36 (Suppl. 1), S121–S130 (2009).

    PubMed  Google Scholar 

  90. Judenhofer, M. S. et al. Simultaneous PET–MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo F. Di Carli.

Ethics declarations

Competing interests

The authors and the Journal Editor B. Mearns declare no competing interests. The CME questions author D. Lie has served as a nonproduct speaker for "Topics in Health" for Merck Speaker Services.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blankstein, R., Di Carli, M. Integration of coronary anatomy and myocardial perfusion imaging. Nat Rev Cardiol 7, 226–236 (2010). https://doi.org/10.1038/nrcardio.2010.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing