Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics in acute lymphoblastic leukaemia: insights and treatment implications

Key Points

  • Acute lymphoblastic leukaemia (ALL) is comprised of multiple subtypes with constellations of chromosomal rearrangements, deletions and gains of DNA, and sequence mutations that target common cellular pathways

  • The prevalence of ALL subtypes varies significantly with age

  • ALL is commonly a polyclonal disease and specific genetic alterations influence the risk of drug resistance, treatment failure and disease relapse

  • Philadelphia (Ph)-chromosome-like ALL is common in children with high-risk ALL, and adults with ALL and is characterized by genetic alterations activating kinase signalling pathways, which are sensitive to tyrosine-kinase inhibitors

  • Common inherited genetic variants in lymphoid transcription factors and tumour-suppressor genes influence the risk of developing ALL, and are associated with ALL subtype and ethnicity

  • Rare mutations have been identified that drive the development of familial ALL

Abstract

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer and an important cause of morbidity from haematological malignancies in adults. In the past several years, we have witnessed major advances in the understanding of the genetic basis of ALL. Genome-wide profiling studies, including microarray analysis and genome sequencing, have helped identify multiple key cellular pathways that are frequently mutated in ALL such as lymphoid development, tumour suppression, cytokine receptors, kinase and Ras signalling, and chromatin remodeling. These studies have characterized new subtypes of ALL, notably Philadelphia chromosome-like ALL, which is a high-risk subtype characterized by a diverse range of alterations that activate cytokine receptors or tyrosine kinases amenable to inhibition with approved tyrosine kinase inhibitors. Genomic profiling has also enabled the identification of inherited genetic variants of ALL that influence the risk of leukaemia development, and characterization of the relationship between genetic variants, clonal heterogeneity and the risk of relapse. Many of these findings are of direct clinical relevance and ongoing studies implementing clinical sequencing in leukaemia diagnosis and management have great potential to improve the outcome of patients with high-risk ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of ALL subtypes across age groups.
Figure 2: Frequency of genetic subtypes in patients with Ph-like ALL.49

Similar content being viewed by others

References

  1. Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013).

    Article  PubMed  Google Scholar 

  2. Ko, R. H. et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium Study. J. Clin. Oncol. 28, 648–654 (2010).

    Article  PubMed  Google Scholar 

  3. Raetz, E. A. & Bhatla, T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Hematology Am. Soc. Hematol. Educ. Program 2012, 129–136 (2012).

    PubMed  Google Scholar 

  4. Stock, W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program. 2010, 21–29 (2010).

    Article  PubMed  Google Scholar 

  5. Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullighan, C. G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 106, 9414–9418 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuiper, R. P. et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Garcia, A. et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122, 2425–2432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tosello, V. et al. WT1 mutations in T-ALL. Blood 114, 1038–1045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzoneva, G. et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat. Med. 19, 368–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Vlierberghe, P. et al. ETV6 mutations in early immature human T cell leukemias. J. Exp. Med. 208, 2571–2579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawamata, N. et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 111, 776–784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts, K. G. et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kalender Atak, Z. et al. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet. 9, e1003997 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  24. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Mardis, E. R. & Wilson, R. K. Cancer genome sequencing: a review. Hum. Mol. Genet. 18, R163–R168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biesecker, L. G. & Green, R. C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Trimarchi, T. et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 158, 593–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12, 847–865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Bonasio, R. & Shiekhattar, R. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet. 48, 433–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrison, C. J. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br. J. Haematol. 144, 147–156 (2009).

    Article  PubMed  Google Scholar 

  36. Harrison, C. J. & Foroni, L. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev. Clin. Exp. Hematol. 6, 91–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Paulsson, K. & Johansson, B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 48, 637–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Harrison, C. J. et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br. J. Haematol. 125, 552–559 (2004).

    Article  PubMed  Google Scholar 

  39. Nachman, J. B. et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110, 1112–1115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raimondi, S. C. et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98, 2715–2722 (2003).

    Article  PubMed  Google Scholar 

  41. Harrison, C. J. Acute lymphoblastic leukemia. Clin. Lab. Med. 31, 631–647 (2011).

    Article  PubMed  Google Scholar 

  42. Russell, L. J. et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114, 2688–2698 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol. 8, 380–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Moorman, A. V. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 26, 123–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Bernt, K. M. & Hunger, S. P. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front. Oncol. 4, 54 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moorman, A. V. et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 109, 3189–3197 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roberts, K. G. et al. Integrated genomic and mutational profiling of adolescent and young adult ALL Identifies a high frequency of BCR-ABL1-like ALL cases with very poor outcome [abstract]. Blood 122, 825 (2013).

    Article  CAS  Google Scholar 

  49. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mullighan, C. G. Genomic characterization of childhood acute lymphoblastic leukemia. Semin. Hematol. 50, 314–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, J. J. et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 112, 4178–4183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawamata, N. et al. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia. Int. J. Oncol. 34, 1603–1612 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Safavi, S. et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia 27, 248–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-progenitor acute lymphoblastic leukemia. Nat. Commun. (in press).

  56. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukaemias. Nat. Genet. http://dx.doi.org/10.1038/ng.3230.

  57. Virely, C. et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia 24, 1200–1204 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Dang, J., Mullighan, C. G., Phillips, L. A., Mehta, P. & Downing, J. R. Retroviral and chemical mutagenesis Identifies Pax5 as a tumor suppressor in B-progenitor acute lymphoblastic leukemia. Blood 112, 1789 (2008).

    Google Scholar 

  59. Schjerven, H. et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat. Immunol. 14, 1073–1083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Joshi, I. et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat. Immunol. 15, 294–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Fortschegger, K., Anderl, S., Denk, D. & Strehl, S. Functional heterogeneity of PAX5 chimeras reveals insight for leukemia development. Mol. Cancer Res. 12, 595–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kawamata, N., Pennella, M. A., Woo, J. L., Berk, A. J. & Koeffler, H. P. Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 31, 966–977 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23, 134–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, G. J. et al. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes Dev. 28, 1337–1350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol. 15, 283–293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Churchman, M. et al. High content screening identifies synthetic lethality of retinoid receptor agonists in IKZF1-mutated BCR-ABL1 positive acute lymphoblastic leukemia. Blood 122, 172 (2013).

    Google Scholar 

  68. van der Veer, A. et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123, 1691–1698 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Harvey, R. C. et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312–5321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stark, G. R. & Darnell, J. E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paulsson, K. et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 47, 26–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Wiemels, J. L. et al. Backtracking RAS mutations in high hyperdiploid childhood acute lymphoblastic leukemia. Blood Cells Mol. Dis. 45, 186–191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Irving, J. et al. Ras pathway mutations are highly prevalent in relapsed childhood acute lymphoblastic leukaemia, may act as relapse-drivers and confer sensitivity to MEK inhibition. Blood 124, 3420–3430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Veer, A. et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 122, 2622–2629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Loh, M. L. et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood 121, 485–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kiyokawa, N. et al. An analysis of Ph-like ALL in Japanese patients [abstract]. Blood 112, 352 (2013).

    Google Scholar 

  77. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roberts, K. G. et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J. Clin. Oncol. 32, 3012–3020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weston, B. W. et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J. Clin. Oncol. 31, e413–e416 (2013).

    Article  PubMed  Google Scholar 

  80. Lengline, E. et al. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica 98, e146–e148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harvey, R. C. et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention [abstract]. Blood 122, 826 (2013).

    Google Scholar 

  83. Hertzberg, L. et al. Down syndrome acute lymphoblastic leukemia: a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the iBFM Study Group. Blood 115, 1006–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Buitenkamp, T. D. et al. Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia 26, 2204–2211 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Yoda, A. et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 107, 252–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Shochat, C. et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124, 106–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Cario, G. et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115, 5393–5397 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Palmi, C. et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia 10, 2245–2253 (2012).

    Article  CAS  Google Scholar 

  89. Yamashita, Y. et al. IKZF1 and CRLF2 gene alterations correlate with poor prognosis in Japanese BCR-ABL1-negative high-risk B-cell precursor acute lymphoblastic leukemia. Pediatr. Blood Cancer 60, 1587–1592 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Attarbaschi, A. et al. Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: a comparative analysis of the AIEOP-BFM and UK NCRI-CCLG study groups. Br. J. Haematol. 158, 772–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, I. M. et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 119, 3512–3522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ensor, H. M. et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood 117, 2129–2136 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Nikolaev, S. I. et al. Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. Nat. Commun. 5, 4654 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Tasian, S. K. et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120, 833–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maude, S. L. et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120, 3510–3518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shochat, C. et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208, 901–908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zenatti, P. P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43, 932–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Treanor, L. M. et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J. Exp. Med. 211, 701–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pui, C. H. et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood 75, 1170–1177 (1990).

    CAS  PubMed  Google Scholar 

  101. Pui, C. H. et al. Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood 70, 247–253 (1987).

    CAS  PubMed  Google Scholar 

  102. An, Q. et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc. Natl Acad. Sci. USA 105, 17050–17054 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Muhlbacher, V. et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer 53, 524–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Mullighan, C. G. et al. ERG deletions define a novel subtype of B-progenitor acute lymphoblastic leukemia [abstract]. Blood 110, 691 (2007).

    Google Scholar 

  105. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Marcucci, G. et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 25, 3337–3343 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Clappier, E. et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 28, 70–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Moorman, A. V. et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109, 2327–2330 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Harrison, C. J. et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28, 1015–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Heerema, N. A. et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children's oncology group studies: a report from the Children's Oncology Group. J. Clin. Oncol. 31, 3397–3402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moorman, A. V. et al. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J. Clin. Oncol. 31, 3389–3396 (2013).

    Article  PubMed  Google Scholar 

  112. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114, 647–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Neumann, M. et al. Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations. Blood Cancer J. 2, e55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Inukai, T. et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99–15 Br. J. Haematol. 156, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Patrick, K. et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br. J. Haematol. 166, 421–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Wood, B. L. et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children's Oncology Group (COG) study AALL0434 [abstract]. Blood 124, 1 (2014).

    Article  Google Scholar 

  121. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 18, 436–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Yan, L. et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica 97, 1708–1712 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Atak, Z. K. et al. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet. 9, e1003997 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Figueroa, M. E. et al. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J. Clin. Invest. 123, 3099–3111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2, 1004–1023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 115, 1214–1225 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Schafer, E. et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115, 4798–4809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Airoldi, I. et al. Methylation of the IL-12Rbeta2 gene as novel tumor escape mechanism for pediatric B-acute lymphoblastic leukemia cells. Cancer Res. 66, 3978–3980 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Batova, A. et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res. 57, 832–836 (1997).

    CAS  PubMed  Google Scholar 

  132. Borssen, M. et al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS ONE 8, e65373 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakamura, M. et al. p16/MTS1/INK4A gene is frequently inactivated by hypermethylation in childhood acute lymphoblastic leukemia with 11q23 translocation. Leukemia 13, 884–890 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Paulsson, K. et al. Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukaemia. Br. J. Haematol. 144, 838–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Roman-Gomez, J. et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104, 2492–2498 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Stumpel, D. J. et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490–5498 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Stumpel, D. J. et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25, 429–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Taylor, K. H. et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res. 67, 2617–2625 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Yang, Y. et al. Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk. Res. 30, 98–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mar, B. G. et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat. Commun. 5, 3469 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Knoechel, B. et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46, 364–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Roderick, J. E. et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123, 1040–1050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bhatia, K. P. et al. Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain 118, 1087–1093 (1995).

    Article  PubMed  Google Scholar 

  147. Hof, J. et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 29, 3185–3193 (2011).

    Article  PubMed  Google Scholar 

  148. Meyer, J. A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45, 290–294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Faham, M. et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120, 5173–5180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Raphael, B. J., Dobson, J. R., Oesper, L. & Vandin, F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 6, 5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Marx, V. Cancer genomes: discerning drivers from passengers. Nat. Meth. 11, 375–379 (2014).

    Article  CAS  Google Scholar 

  153. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. The Cancer Genome Atlas Research et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

  155. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, H. et al. Novel susceptibility variants at 10p12.31–122 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang, J. J. et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 120, 4197–4204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat. Genet. 43, 237–241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, W. et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia 24, 894–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, J. J. et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301, 393–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 42, 492–494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Prasad, R. B. et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 115, 1765–1767 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Powell, B. C. et al. Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatr. Blood Cancer 60, E1–E3 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Dyer, M. J. et al. Immunoglobulin heavy chain (IGH) locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL): rare clinical curios or potent genetic drivers? Blood 115, 1490–1499 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Perez-Andreu, V. et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 125, 680–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia 5, 1136–1138 (2013).

    Google Scholar 

  172. Pui, C. H., Carroll, W. L., Meshinchi, S. & Arceci, R. J. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J. Clin. Oncol. 29, 551–565 (2011).

    Article  PubMed  Google Scholar 

  173. Campana, D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr. Opin. Hematol. 19, 313–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Waanders, E. et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 25, 254–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Kuiper, R. P. et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 24, 1258–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Palmi, C. et al. Impact of IKZF1 deletions on IKZF1 expression and outcome in Philadelphia chromosome negative childhood BCP-ALL. Reply to “incidence and biological significance of IKZF1/Ikaros gene deletions in pediatric Philadelphia chromosome negative and Philadelphia chromosome positive B-cell precursor acute lymphoblastic leukemia”. Haematologica 98, e164–e165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Palmi, C. et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 98, 1226–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14, e205–e217 (2013).

    PubMed  Google Scholar 

  179. Venn, N. C. et al. Highly sensitive MRD tests for ALL based on the IKZF1 Delta3–6 microdeletion. Leukemia 26, 1414–1416 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Meyer, J. A., Carroll, W. L. & Bhatla, T. Screening for gene mutations: will identification of NT5C2 mutations help predict the chance of relapse in acute lymphoblastic leukemia? Expert. Rev. Hematol. 6, 223–224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Iacobucci, I. et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114, 2159–2167 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Martinelli, G. et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J. Clin. Oncol. 27, 5202–5207 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Gaikwad, A. et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br. J. Haematol. 144, 930–932 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Kearney, L. et al. A specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukaemia. Blood 113, 646–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Yoda, A. et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 107, 252–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Blau, O. et al. Exon 5 mutations in the p53 gene in relapsed childhood acute lymphoblastic leukemia. Leuk. Res. 21, 721–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Gump, J., McGavran, L., Wei, Q. & Hunger, S. P. Analysis of TP53 mutations in relapsed childhood acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol. 23, 416–469 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues at St Jude Children's Research Hospital, the Children's Oncology Group and the National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatments (TARGET) consortium. Several of the studies described were supported by the American Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, the National Cancer Institute of the US National Institutes of Health, Alex's Lemonade Stand Foundation, the American Association for Cancer Research, the American Society of Haematology, the Henry Schueler 41&9 Foundation, the Leukemia and Lymphoma Society, the National Health and Medical Research Council (Australia), the Pew Charitable Trusts, Stand Up To Cancer and the St Baldrick's Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and edited the manuscript before submission.

Corresponding author

Correspondence to Charles G. Mullighan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, K., Mullighan, C. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12, 344–357 (2015). https://doi.org/10.1038/nrclinonc.2015.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.38

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer