Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New and experimental therapies for HCV

Abstract

Despite improvements to treatments for HCV infection, almost half of patients cannot be cured with standard combination therapy (pegylated interferon α and ribavirin). The HCV life cycle offers a number of potential targets for molecular therapy, and several specifically targeted antiviral therapies for HCV (STAT-Cs) are in preclinical and clinical stages of development. Evidence to date suggests that monotherapy with any antiviral drug is unlikely to eradicate HCV infection. Combination therapy with interferon and ribavirin is necessary for the augmentation of antiviral drug activity and/or prevention of drug resistance. Results from clinical trials carried out in the past few years on STAT-C agents in combination with standard therapy with peginterferon and ribavirin provide great promise of higher rates of sustained virological response and, potentially, shorter duration of therapy than standard therapy alone achieves. Although pegylated interferon and ribavirin are likely to remain a cornerstone of therapeutic regimens in the short term, combinations of antiviral drugs of different classes, possibly along with novel agents that target host factors and modulate viral replication or augment antiviral defenses, offer the eventual possibility of interferon-free regimens.

Key Points

  • HCV infection is an epidemic of global proportions and up to 200 million people are estimated to be infected worldwide: standard anti-HCV therapy consists of a combination of peginterferon and ribavirin

  • The HCV life cycle offers several possible targets for specific inhibition, and many specifically targeted antiviral therapies for HCV (STAT-Cs) and other novel drugs are currently in preclinical and clinical stages of development

  • Several STAT-C drugs, including HCV protease and polymerase inhibitors, have the capacity to induce suppression of HCV replication; the frequency and characteristics of this resistance vary between drug classes

  • Evidence suggests that combining STAT-C drugs with standard therapy induces higher response rates and could afford a shorter duration of therapy than standard treatment alone does in patients infected with HCV gentotype 1

  • Non-STAT-C strategies, including augmentation of host immune response and inhibition of endogenous cellular enzymes that facilitate viral replication, also offer promise, as do modifications of standard therapy

  • Combinations of novel agents, with or without standard therapy, should be evaluated as early in their development programs as regulatory and safety considerations allow

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the HCV life cycle.

Similar content being viewed by others

References

  1. Wasley, A. & Alter, M. J. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin. Liver Dis. 20, 1–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Verna, E. C. & Brown, R. S. Hepatitis C and liver transplantation: enhancing outcomes and should patients be retransplanted. Clin. Liver Dis. 12, 637–659, ix (2008).

    Article  PubMed  Google Scholar 

  3. Simmonds, P. Viral heterogeneity of the hepatitis C virus. J. Hepatol. 31 (Suppl. 1), 54–60 (1999).

    Article  PubMed  Google Scholar 

  4. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bartosch, B. & Cosset, F. L. Cell entry of hepatitis C virus. Virology 348, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lindenbach, B. D. & Rice, C. M. Unravelling hepatitis C virus replication from genome to function. Nature 436, 933–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Penin, F. et al. Structural biology of hepatitis C virus. Hepatology 39, 5–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kunkel, M. et al. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J. Virol. 75, 2119–2129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Koutsoudakis, G. et al. The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J. Virol. 81, 588–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Helle, F. et al. Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans. J. Biol. Chem. 281, 25177–25183 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schofield, D. J. et al. Human monoclonal antibodies that react with the E2 glycoprotein of hepatitis C virus and possess neutralizing activity. Hepatology 42, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Davis, G. L. et al. A randomized, open-label study to evaluate the safety and pharmacokinetics of human hepatitis C immune globulin (Civacir) in liver transplant recipients. Liver Transpl. 11, 941–949 (2005).

    Article  PubMed  Google Scholar 

  16. Eren, R. et al. Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant patients. J. Virol. 80, 2654–2664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galun, E. et al. Clinical evaluation (Phase I) of a human monoclonal antibody against hepatitis C virus: safety and antiviral activity. J. Hepatol. 46, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Halfon, P. et al. Entry inhibitor GNS 037 exhibits potent anti-HCV activity in vitro [Abstract]. Hepatology 44, 236A (2006).

    Google Scholar 

  19. Nevens, F. et al. A pilot study of therapeutic vaccination with envelope protein E1 in 35 patients with chronic hepatitis C. Hepatology 38, 1289–1296 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. McHutchison, J. G. et al. A phase I trial of an antisense inhibitor of hepatitis C virus (ISIS 14803), administered to chronic hepatitis C patients. J. Hepatol. 44, 88–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Fish, R. J. & Kruithof, E. K. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol. Biol. 5, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kieffer, T. L. et al. Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46, 631–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kuntzen, T. et al. Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naïve patients. Hepatology 48, 1769–1778 (2008).

    Article  PubMed  Google Scholar 

  24. McHutchison, J. G. et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N. Engl. J. Med. 360, 1827–1838 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hézode, C. et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med. 360, 1839–1850 (2009).

    Article  PubMed  Google Scholar 

  26. McHutchison, J. G. et al. A phase 2b study of telaprevir with peginterferon alfa-2a and ribavirin in hepatitis C genotype 1 null and partial responders and relapsers following a prior course of peginterferon alfa-2a/b and ribavirin therapy: PROVE3 interim results [Abstract]. Hepatology 48, 431A (2008).

    Google Scholar 

  27. Shiffman, M. L. et al. A study of telaprevir combined with peginterferon-alfa-2a and ribavirin in subjects with well-documented non-response or relapse after previous peginterferon-alfa-2a and ribavirin treatment: interim analysis [Abstract]. Hepatology 48, 1135A (2008).

    Google Scholar 

  28. Kwo, P. et al. HCV SPRINT-1 final results: SVR 24 from a phase 2 study of boceprevir plus PEGINTRON (peginterferon alfa-2B)/ribavirin in treatment-naive subjects with genotype-1 chronic hepatitis C [Abstract 4]. J. Hepatol. 50 (Suppl. 1), S4 (2009).

    Article  Google Scholar 

  29. Kwo, P. et al. HCV SPRINT-1: Boceprevir plus peginterferon alfa-2b/ribavirin for treatment of genotype 1 chronic hepatitis C in previously untreated patients [Abstract]. Hepatology 48, 1027A (2008).

    Article  Google Scholar 

  30. Schiff, E. et al. Boceprevir B combination therapy in null responders (NR): response dependent on interferon responsiveness. J. Hepatol. 48, S46 (2008).

    Article  Google Scholar 

  31. Reesink, H. et al. Safety of the HCV protease inhibitor TMC435350 in healthy volunteers and safety and activity in chronic hepatitis C infected individuals: a phase I study. J. Hepatol. 48, S28–S29 (2008).

    Article  Google Scholar 

  32. Seiwert, S. D. et al. Preclinical characteristics of ITMN-B, an orally active inhibitor of the HCV NS3/4A protease nominated for preclinical development. J. Hepatol. 44, S278 (2006).

    Article  Google Scholar 

  33. Achillion Pharmaceuticals Inc. Achillon ACH-1095 [online], (2008).

  34. Manns, M. P. et al. Safety and antiviral activity of BI201335, a new HCV NS3 protease inhibitor, in treatment naive patients with chronic hepatitis C genotype- 1 infection given as monotherapy and in combination with peginterferon alfa 2a (P) and ribavirin (R) [Abstract]. Hepatology 48, 1133A (2008).

    Google Scholar 

  35. Lawitz, E. J. et al. Safety, tolerability and antiviral activity of MK-7009, a novel inhibitor of the hepatitis C virus NS3/4A protease, in patients with chronic HCV genotype 1 infection [Abstract]. Hepatology 48, 403A (2008).

    Google Scholar 

  36. Appel, N. et al. From structure to function: new insights into hepatitis C virus RNA replication. J. Biol. Chem. 281, 9833–9836 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pockros, P. J. et al. Robust synergistic antiviral effect of R1626 in combination with peginterferon alfa-2a (40kD), with or without ribavirin: interim analysis results of phase 2a study. Hepatology 46, 311A (2007).

    Article  Google Scholar 

  38. Nelson, D. et al. High end-of-treatment response (84%) after 4 weeks of R1626, peginterferon alfa-2a (40kd) and ribavirin followed by a further 44 weeks of peginterferon alfa-2a and ribavirin [Abstract]. J. Hepatol. 48, S371–S371 (2008).

    Article  Google Scholar 

  39. Rodriguez-Torres, M. et al. Potent antiviral response to the HCV nucleoside polymerase inhibitor R7128 for 28 days with PEG-IFN and ribavirin: subanalysis by race/ethnicity, weight and HCV genotype [Abstract]. Hepatology 48, 1160A (2008).

    Google Scholar 

  40. Reddy, R. et al. Antiviral activity, pharmacokinetics, safety, and tolerability of R7128, a novel nucleoside HCV RNA polymerase inhibitor, following multiple, ascending, oral doses in patients with HCV genotype 1 infection who have failed prior interferon therapy [Abstract]. Hepatology 46, 862A (2007).

    Google Scholar 

  41. McCown, M. F. et al. The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors. Antimicrob. Agents Chemother. 52, 1604–1612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gane, E. J. et al. First-in-man demonstration of potent antiviral activity with a nucleoside polymerase (R7128) and protease (R7227/ITMN-191) inhibitor combination I HCV: safety, pharmacokinetics, and virologic results from INFORM-1 [Abstract 1046]. J. Hepatol. 50 (Suppl. 1), S380 (2009).

    Article  Google Scholar 

  43. Gane, E. J. et al. Antiviral activity of the HCV nucleoside polymerase inhibitor R7128 in HCV genotype 2 and 3 prior non-responders: interim results of r7128 1,500 mg bid with PEG-IFN and ribavirin for 28 days [Abstract]. Hepatology 48, 1024A (2008).

    Google Scholar 

  44. Bavisotto, L. et al. Antiviral, pharmacokinetic and safety data for GS 9190, a non-nucleoside HCV NS5b polymerase inhibitor, in a phase-1 trial in HCV genotype 1 infected subjects. Hepatology 46 (Suppl.), 225A (2007).

    Google Scholar 

  45. Jacobson, I. et al. Antiviral activity of filibuvir in combination with pegylated interferon alfa-2a and ribavirin for 28 days in treatment naïve patients chronically infected with HCV genotype 1. Presented at the 44th Annual Meeting of the European Association for the Study of the Liver 2009, April 22–26, Copenhagen, Denmark.

  46. Bedard, J. et al. Identification and characterization of VCH-222, a novel potent and selective non-nucleoside HCV polymerase inhibitor. Presented at the 44th Annual Meeting of the European Association for the Study of the Liver, April 22–26, Copenhagen, Denmark (2009).

  47. Chauret, N. et al. Preclinical pharmacokinetic and ADME characterization of VCH-222, a novel non-nucleoside HCV NS5B polymerase inhibitor. Presented at the 44th Annual Meeting of the European Association for the Study of the Liver 2009, April 22–26, Copenhagen, Denmark.

  48. Cooper, C. et al. Safety, tolerability and pharmacokinetics of the HCV polymerase inhibitor VCH-222 following single dose administration in healthy volunteers and antiviral activity in HCV-infected individuals. Presented at the 44th Annual Meeting of the European Association for the Study of the Liver 2009, April 22–26, Copenhagen, Denmark.

  49. Burckstummer, T. et al. Raf-1 kinase associates with hepatitis C virus NS5A and regulates viral replication. FEBS Lett. 580, 575–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Watashi, K. et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol. Cell 19, 111–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Flisiak, R. et al. The cyclophilin inhibitor DEBIO-025 has a potent dual anti-HIV and anti-HCV activity in treatment-naive HIV/HCV co-infected subjects [Abstract]. Hepatology 44, 609A (2006).

    Google Scholar 

  52. Flisiak, R. et al. Efficacy and safety of increasing doses of the cyclophilin inhibitor DEBIO 025 in combination with pegylated interferon alpha-2a in treatment naive chronic HCV patients. J. Hepatol. 48, S62 (2008).

    Article  Google Scholar 

  53. Ma, S. et al. NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. Antimicrob. Agents Chemother. 50, 2976–2982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Durantel, D. et al. Effects of interferon, ribavirin, and iminosugar derivatives on cells persistently infected with noncytopathic bovine viral diarrhea virus. Antimicrob. Agents Chemother. 48, 497–504 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaita, K. et al. PhIl proof of concept study of celgosivir in combination with peginterferon alfa-2b and ribavirin in chronic hepatitis C genotype-1 non-responder patients. J. Hepatol. 46, S56–S57 (2007).

    Article  Google Scholar 

  56. Gorbakov, V. V., Kim, H., Oronsky, B. & Lang, W. HCV RNA results from a phase II, randomized, open-label study of omega interferon (IFN) with or without ribavirin in IFN-naive genotype 1 chronic hepatitis C patients [Abstract]. Hepatology 42, 705A (2005).

    Google Scholar 

  57. Brennan, B. et al. A phase 1 study to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of escalating single doses of R7025, a novel pegylated interferon compared to placebo and peginterferon 2a (40kD) (PEGASYS) in healthy volunteers [Abstract]. Hepatology 46, 851A (2007).

    Article  Google Scholar 

  58. Nelson, D. et al. Sustained virologic response rates with albumin alfa-2b in combination with ribavirin in non-responders to prior interferon therapy: interim results from a phase 2 study [Abstract]. Hepatology 44, 611A (2006).

    Google Scholar 

  59. Zeuzem, S. et al. Albinterferon alfa-2b dosed every two or four weeks in interferon-naïve patients with genotype 1 chronic hepatitis C. Hepatology 48, 407–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Zeuzem, S. et al. Efficacy and safety of albinterferon alfa-2B in combination with ribavirin in treatment-naive, chronic hepatitis C genotype 1 (CHC G1) patients [Abstract 1041]. J. Hepatol. 50 (Suppl. 1), S377 (2009).

    Article  Google Scholar 

  61. Nelson, D. et al. Efficacy and safety results of albinterferon alfa-2B in combination with ribavirin in interferon-alfa treatment naive patients with genotype 2 or 3 chronic hepatitis C [abstract 1042]. J. Hepatol. 50 (Suppl. 1), S378 (2009).

    Article  Google Scholar 

  62. Poordad, F. et al. A study of telaprevir (TVR) with peginterferon alfa-2a (P) and ribavirin (R) in subjects with well documented prior P/R. null response, non-response or relapse: preliminary results. J. Hepatol. 48, S374–S375 (2008).

    Article  Google Scholar 

  63. Benhamou, Y. et al. The safety and efficacy of viramidine® plus pegylated interferon alpha-2b versus ribavirin plus pegylated interferon alpha-2b in therapy-naive patients infected with HCV: phase 3 results. J. Hepatol. 44, S273 (2006).

    Article  Google Scholar 

  64. Marcellin, P. et al. The safety and efficacy of taribavirin plus pegylated interferon alfa-2a versus ribavirin plus pegylated interferon alfa-2a in therapy-naive patients infected with HCV: phase 3 results. J. Hepatol. 46, S7 (2007).

    Article  Google Scholar 

  65. Lawitz, E. et al. Treatment week 24 results of weight-based taribavirin versus weight-based ribavirin, both with peginterferon alfa-2b, in naive chronic hepatitis C, genotype 1 patients [Abstract]. Hepatology 48, 433A (2008).

    Article  Google Scholar 

  66. Pockros, P. J. et al. Oral resiquimod in chronic HCV infection: safety and efficacy in 2 placebo-controlled, double-blind phase IIa studies. J. Hepatol. 47, 174–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kerr, B. et al. Pharmacokinetics, safety and tolerability of the isatoribine oral prodrug ANA975 in a phase 1 healthy volunteer study [Abstract]. Hepatology 42, 533A (2005).

    Article  Google Scholar 

  68. Jacobson, I. et al. Early viral response and on treatment response to CPG10101, in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response [Abstract]. Hepatology 44, 224A (2006).

    Google Scholar 

  69. Lee, J. et al. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc. Natl Acad. Sci. USA 103, 1828–1833 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cooper, S. et al. Analysis of a successful immune response against hepatitis C virus. Immunity 10, 439–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Klade, C. S. et al. Therapeutic vaccination of chronic hepatitis C nonresponder patients with the peptide vaccine IC41. Gastroenterology 134, 1385–1395 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Goossens, V. et al. Development of a universal T-cell vaccine candidate for hepatitis C applicable to the majority of human HLA types and HCV genotypes [Abstract]. Hepatology 44, 533A (2006).

    Google Scholar 

  73. Gehring, S. et al. Characterization of a novel approach for HCV immunization using splenic derived dendritic cells which phagocytosed HCV NS5 coated magnetic beads [Abstract]. Hepatology 44, 312A (2006).

    Google Scholar 

  74. Schiff, E. R. et al. HCV-specific cellular immunity, RNA reductions, and normalization of ALT in chronic HCV subjects after treatment with GI-5005, a yeast-based immunotherapy targeting NS3 and Core: a randomized, double-blind, placebo controlled phase 1b study [Abstract]. Hepatology 46, 816A (2007).

    Article  Google Scholar 

  75. Lawitz, E. J. et al. GI-5005 immunotherapy plus peg-IFN/ribavirin versus peg-IFN/ribavirin in genotype 1 chronic HCV subjects; preliminary phase 2 EVR analyses. Presented at the 44th Annual Meeting of the European Association for the Study of the Liver 2009, April 22–26, Copenhagen, Denmark.

  76. Korba, B. E. et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antiviral Res. 77, 56–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Rossignol, J. F. et al. Improved virologic response in chronic hepatitis C genotype 4 treated with nitazoxanide, peginterferon, and ribavirin. Gastroenterology 136, 856–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Rossignol, J.-F. et al. Improved virologic response in chronic hepatitis C genotype 4 treated with nitazoxanide, peginterferon, and ribavirin. Gastroenterology 136, 856–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Rossignol, J. F. et al. Evaluation of a 4 week lead-in phase with nitazoxanide (NTZ) prior to peginterferon (PEGIFN) plus NTZ for treatment of chronic hepatitis C: final report [Abstract]. Hepatology 48, 344A (2008).

    Google Scholar 

  80. Polyak, S. J. et al. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-κB signaling, and HCV infection by standardized silymarin. Gastroenterology 132, 1925–1936 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ferenci, P. et al. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to antiviral combination therapy. J. Hepatol. 48, S28 (2008).

    Article  Google Scholar 

  82. Martell, M. et al. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J. Virol. 66, 3225–3229 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Le Pogam, S. et al. Low level of resistance, low viral fitness and absence of resistance mutations in baseline quasispecies may contribute to high barrier to R1626 resistance in vivo. J. Hepatol. 48, S10 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

I. M. Jacobson declares associations with the following companies: Schering-Plough, Gilead Sciences, Idenix Pharmaceuticals and Novartis AG, as recipient of grant/research support, consultant/advisor and member of the speakers' bureau; Vertex Pharmaceuticals, GlobeImmune, Human Genome Sciences, Boehringer Ingelheim, Roche and Pharmasset, as recipient of grant/research support and consultant/advisor; Bristol-Myers Squibb, as consultant/advisor and member of the speakers' bureau; Valeant Pharmaceuticals International, Intarcia Therapeutics, as recipient of0020grant/research support; and Abbott, Pfizer, Merck & Co., Sanofi-aventis, Progenics Pharmaceuticals, and ZymoGenetics as consultant/advisor. A. A. Pereira declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., Jacobson, I. New and experimental therapies for HCV. Nat Rev Gastroenterol Hepatol 6, 403–411 (2009). https://doi.org/10.1038/nrgastro.2009.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing