Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clostridium difficile infection: epidemiology, diagnosis and understanding transmission

Key Points

  • Clostridium difficile infection (CDI) is a continually evolving global health-care problem

  • Community-onset CDI is increasing and multiple potential reservoirs of infection exist including environmental sources, animals, asymptomatic patients and symptomatic patients

  • Highly discriminatory typing techniques such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis offer the potential for illuminating previously under-recognized routes of C. difficile transmission

  • The optimal approach to sampling and testing for CDI remains a contentious issue

  • Multi-step algorithms are recommended to improve diagnostic sensitivity and specificity

Abstract

Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for Clostridium difficile acquisition, germination and infection.
Figure 2: Global epidemiology of common Clostridium difficile ribotypes.
Figure 3: Examples of multistep algorithms for testing stool samples for rapid diagnosis of CDI.

Similar content being viewed by others

References

  1. Wilson, K. H. et al. Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. J. Infect. Dis. 153, 547–551 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Walker, A. S. et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 9, e1001172 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shim, J. K., Johnson, S., Samore, M. H., Bliss, D. Z. & Gerding, D. N. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351, 633–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Clabots, C. R., Johnson, S., Olson, M. M., Peterson, L. R. & Gerding, D. N. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J. Infect. Dis. 166, 561–567 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. He, M. et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl Acad. Sci. USA 107, 7527–7532 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Solomon, K. The host immune response to Clostridium difficile infection. Ther. Adv. Infect. Dis. 1, 19–35 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Vedantam, G. et al. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 3, 121–134 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walker, A. S. et al. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin. Infect. Dis. 56, 1589–1600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solomon, K. et al. Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. J. Med. Microbiol. 62, 1453–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L. & Kasper, D. L. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J. Infect. Dis. 136, 701–705 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Archibald, L. K., Banerjee, S. N. & Jarvis, W. R. Secular trends in hospital-acquired Clostridium difficile disease in the United States, 1987–2001. J. Infect. Dis. 189, 1585–1589 (2004).

    Article  PubMed  Google Scholar 

  14. Freeman, J. et al. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 23, 529–549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, K. A. et al. Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect. Dis. 14, 1208–1219 (2014).

    Article  PubMed  Google Scholar 

  16. Centre for Disease Control and Prevention. Clostridium difficile infection [online], (2015).

  17. Loo, V. G. et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353, 2442–2449 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, A., Kuijper, E. & Wilcox, M. Clostridium difficile: a European perspective. J. Infect. 66, 115–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Curry, S. R. et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin. Infect. Dis. 57, 1094–1102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. McFarland, L. V., Mulligan, M. E., Kwok, R. Y. & Stamm, W. E. Nosocomial acquisition of Clostridium difficile infection. N. Engl. J. Med. 320, 204–210 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Loo, V. G. et al. Host and pathogen factors for Clostridium difficile infection and colonization. N. Engl. J. Med. 365, 1693–1703 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, V. T. & Nelson, K. The role of physical proximity in nosocomial diarrhea. Clin. Infect. Dis. 31, 717–722 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Chitnis, A. S. et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern. Med. 173, 1359–1367 (2013).

    Article  PubMed  Google Scholar 

  24. Zacharioudakis, I. M. et al. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 110, 381–390 (2015).

    Article  PubMed  Google Scholar 

  25. Khanna, S. et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am. J. Gastroenterol. 107, 89–95 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jury, L. A. et al. Outpatient healthcare settings and transmission of Clostridium difficile. PLoS ONE 8, e70175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hensgens, M. P. et al. Clostridium difficile infection in the community: a zoonotic disease? Clin. Microbiol. Infect. 18, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kufelnicka, A. M. & Kirn, T. J. Effective utilization of evolving methods for the laboratory diagnosis of Clostridium difficile infection. Clin. Infect. Dis. 52, 1451–1457 (2011).

    Article  PubMed  Google Scholar 

  30. Goorhuis, A. et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis. 47, 1162–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Bacci, S. et al. Binary toxin and death after Clostridium difficile infection. Emerg. Infect. Dis. 17, 976 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gerding, D. N. et al. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 5, 15–27 (2014).

    Article  PubMed  Google Scholar 

  33. Kuehne, S. A. et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 209, 83–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Public Health England. Clostridium difficile Ribotyping Network (CDRN) for England and Northern Ireland 2011–2013 report. The National Archives [online], (2014).

  35. Hensgens, M. P. et al. Clostridium difficile infection in an endemic setting in the Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 30, 587–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Tenover, F. C. et al. Comparison of strain typing results for Clostridium difficile isolates from North America. J. Clin. Microbiol. 49, 1831–1837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ahmetagic, S. et al. Clostridium difficile infection in hospitalized patients at University Clinical Center Tuzla, Bosnia and Herzegovina: a 4 year experience. Mater. Sociomed. 25, 153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rupnik, M. et al. Diversity of C. difficile PCR ribotypes isolated from hospitalised patients in Slovenia during two-winter-month period. Zdravniški Vestnik 82, 739–745 (2013).

    Google Scholar 

  39. Lim, S. K. et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin. Infect. Dis. 58, 1723–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Eyre, D. W. et al. Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. Euro Surveill. 20, 21059 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. De Almeida, M. et al. Severe Clostridium difficile infection in New Zealand associated with an emerging strain, PCR-ribotype 244. N. Z. Med. J. 126, 9–14 (2013).

    PubMed  Google Scholar 

  42. Cheng, A. C. et al. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg. Infecti. Diseases 18, 1453 (2012).

    Article  CAS  Google Scholar 

  43. Collins, D. A., Hawkey, P. M. & Riley, T. V. Epidemiology of Clostridium difficile infection in Asia. Antimicrob. Resist. Infect.Control 2, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Waslawski, S. et al. Clostridium difficile ribotype diversity at six health care institutions in the United States. J. Clin. Microbiol. 51, 1938–1941 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Foster, N. et al. Epidemiology of Clostridium difficile infection in two tertiary-care hospitals in Perth, Western Australia: a cross-sectional study. New Microbes New Infect. 2, 64–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griffiths, D. et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48, 770–778 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lemee, L. et al. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J. Clin. Microbiol. 42, 2609–2617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Neill, G. L., Ogunsola, F. T., Brazier, J. S. & Duerden, B. I. Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2, 205–209 (1996).

    Article  CAS  Google Scholar 

  49. Didelot, X. et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 13, R118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chakra, C. et al. Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PloS ONE 9, e98400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Skraban, J. et al. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PloS ONE 8, e58005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rea, M. C. et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J. Clin. Microbiol. 50, 867–875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Littman, D. R. & Pamer, E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yakob, L. et al. Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Sci. Rep. 5, 12666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Awad, M. M., Johanesen, P. A., Carter, G. P., Rose, E. & Lyras, D. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut microbes 5, 579–593 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Smits, W. K. Hype or hypervirulence: a reflection on problematic C. difficile strains. Virulence 4, 592–596 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Britton, R. A. & Young, V. B. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 20, 313–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. P. The ClosTron: a universal gene knock-out system for the genus Clostridium. Microbiol. Methods 70, 452–464 (2007).

    Article  CAS  Google Scholar 

  61. Rosenbusch, K. E., Bakker, D., Kuijper, E. J. & Smits, W. K. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PloS ONE 7, e48608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mackin, K. E., Carter, G. P., Howarth, P., Rood, J. I. & Lyras, D. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS ONE 8, e79666 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Underwood, S. et al. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191, 7296–7305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deakin, L. J. et al. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect. Immun. 80, 2704–2711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goldenberg, S. D. & French, G. L. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J. Infect. 62, 355–362 (2011).

    Article  PubMed  Google Scholar 

  66. Shen, A. Clostridium difficile toxins: mediators of inflammation. J. Innate Immun. 4, 149–158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552.e3 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Buonomo, E. L. et al. Role of interleukin 23 signaling in Clostridium difficile colitis. J. Infect. Dis. 208, 917–920 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Madan, R. & Petri, W. A. Jr. Immune responses to Clostridium difficile infection. Trends Mol. Med. 18, 658–666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kelly, C. P. & Kyne, L. The host immune response to Clostridium difficile. J. Med. Microbiol. 60, 1070–1079 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. El Feghaly, R. E. et al. Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. Clin. Infect. Dis. 56, 1713–1721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 342, 390–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357, 189–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Monaghan, T. M., Robins, A., Knox, A., Sewell, H. F. & Mahida, Y. R. Circulating antibody and memory B-Cell responses to C. difficile toxins A and B in patients with C. difficile-associated diarrhoea, inflammatory bowel disease and cystic fibrosis. PLoS ONE 8, e74452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Planche, T. D. et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect. Dis. 13, 936–945 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martin, J. et al. Investigating Clostridium difficile transmission using whole genome sequencing (WGS): few cases follow direct contact with a symptomatic donor (abstract). Program and abstracts of the 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy [online], (2013).

  78. Rutala, W. A. & Weber, D. J. Role of the hospital environment in disease transmission with a focus on Clostridium difficile. Healthc. Infect. 18, 18–22 (2013).

    Article  Google Scholar 

  79. Friedman, N. D. et al. Prevalence of Clostridium difficile colonization among healthcare workers. BMC Infect. Dis. 13, 459 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Säll, O., Johansson, K. & Norén, T. Low colonization rates of Clostridium difficile among patients and healthcare workers at Örebro University Hospital in Sweden. APMIS 123, 240–244 (2015).

    Article  PubMed  Google Scholar 

  81. Cohen, S. H. et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect. Control Hosp. Epidemiol. 31, 431–455 (2010).

    Article  PubMed  Google Scholar 

  82. Hensgens, M. P. M. et al. Diarrhoea in general practice: when should a Clostridium difficile infection be considered? Results of a nested case-control study. Clin. Microbiol. Infect. 20, O1067–O1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Guerrero, D. M. et al. Clostridium difficile infection in a Department of Veterans Affairs long-term care facility. Infect. Control Hosp. Epidemiol. 32, 513–515 (2011).

    Article  PubMed  Google Scholar 

  84. Chang, H. T. et al. Onset of symptoms and time to diagnosis of Clostridium difficile-associated disease following discharge from an acute care hospital. Infect. Control Hosp. Epidemiol. 28, 926–931 (2007).

    Article  PubMed  Google Scholar 

  85. Arvand, M. et al. High prevalence of Clostridium difficile colonization among nursing home residents in Hesse, Germany. PloS ONE 7, e30183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, J. H., Toy, D. & Muder, R. R. Clostridium difficile infection in a long-term care facility: hospital-associated illness compared with long-term care-associated illness. Infect. Control Hosp. Epidemiol. 32, 656–660 (2011).

    Article  PubMed  Google Scholar 

  87. Ziakas, P. D. et al. Asymptomatic carriers of toxigenic C. difficile in long-term care facilities: a meta-analysis of prevalence and risk factors. PloS ONE 10, e0117195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilcox, M., Mooney, L., Bendall, R., Settle, C. & Fawley, W. A case–control study of community-associated Clostridium difficile infection. J. Antimicrob. Chemother. 62, 388–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Stoesser, N. et al. Molecular epidemiology of Clostridium difficile strains in children compared with that of strains circulating in adults with Clostridium difficile-associated infection. J. Clin. Microbiol. 49, 3994–3996 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rousseau, C. et al. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin. Infect. Dis. 55, 1209–1215 (2012).

    Article  PubMed  Google Scholar 

  91. Rodriguez-Palacios, A., Borgmann, S., Kline, T. R. & LeJeune, J. T. Clostridium difficile in foods and animals: history and measures to reduce exposure. Animal Health Res. Rev. 14, 11–29 (2013).

    Article  Google Scholar 

  92. Knetsch, C. W. et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill. 19, 20954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Keessen, E. C., Harmanus, C., Dohmen, W., Kuijper, E. J. & Lipman, L. J. Clostridium difficile infection associated with pig farms. Emerg. Infect. Dis. 19, 1032–1034 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gould, L. H. & Limbago, B. Clostridium difficile in food and domestic animals: a new foodborne pathogen? Clin. Infect. Dis. 51, 577–582 (2010).

    Article  PubMed  Google Scholar 

  95. Al Saif, N. & Brazier, J. The distribution of Clostridium difficile in the environment of South Wales. J. Med. Microbiol. 45, 133–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Alam, M. J., Anu, A., Walk, S. T. & Garey, K. W. Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe 27, 31–33 (2014).

    Article  PubMed  Google Scholar 

  97. Wilcox, M. H. Overcoming barriers to effective recognition and diagnosis of Clostridium difficile infection. Clin. Microbiol. Infect. 18 (Suppl. 6), 13–20 (2012).

    Article  PubMed  Google Scholar 

  98. Dubberke, E. R. et al. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J. Clin. Microbiol. 49, 2887–2893 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Elliott, B. et al. The complexity and diversity of the Pathogenicity Locus in Clostridium difficile clade 5. Genome Biol. Evol. 6, 3159–3170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brouwer, M. S. et al. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat. Commun. 4, 2601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181, 29–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Longtin, Y. et al. Impact of the type of diagnostic assay on Clostridium difficile infection and complication rates in a mandatory reporting program. Clin. Infect. Dis. 56, 67–73 (2013).

    Article  PubMed  Google Scholar 

  103. Baker, I., Leeming, J. P., Reynolds, R., Ibrahim, I. & Darley, E. Clinical relevance of a positive molecular test in the diagnosis of Clostridium difficile infection. J. Hosp. Infect. 84, 311–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Goldenberg, S. D., Cliff, P. R. & French, G. L. Laboratory diagnosis of Clostridium difficile infection. J. Clin. Microbiol. 48, 3048–3049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Polage, C. R. et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern. Med. 175, 1792–1801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dallal, R. M. et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann. Surg. 235, 363–372 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Guerrero, D. M. et al. Clinical and infection control implications of Clostridium difficile infection with negative enzyme immunoassay for toxin. Clin. Infect. Dis. 53, 287–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Crobach, M., Dekkers, O., Wilcox, M. & Kuijper, E. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Data review and recommendations for diagnosing Clostridium difficile infection (CDI). Clin. Microbiol. Infect. 15, 1053–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. UK Department of Health. Clostridium difficile: updated guidance on the diagnosis and reporting. UK Government website [online], (2012).

  111. Alcala, L. et al. Laboratory diagnosis of Clostridium difficile infection in Spain: a population-based survey. J. Hosp. Infect. 79, 13–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Burdette, S. D. & Bernstein, J. M. Does the nose know? The odiferous diagnosis of Clostridium difficile-associated diarrhea. Clin. Infect. Dis. 44, 1142–1142 (2007).

    Article  PubMed  Google Scholar 

  113. Huber, C. A., Foster, N. F., Riley, T. V. & Paterson, D. L. Clostridium difficile typing methods: challenges for standardization. J. Clin. Microbiol. 51, 2810–2814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eyre, D. W. et al. Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J. Clin. Microbiol. 51, 4141–4149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eyre, D. W. et al. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2, e001124 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. & Crook, D. W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13, 601–612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Reil, M. et al. Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1431–1436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shetty, N., Wren, M. W. & Coen, P. G. The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J. Hosp. Infect. 77, 1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Carroll, K. C. Tests for the diagnosis of Clostridium difficile infection: the next generation. Anaerobe 17, 170–174 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Noren, T., Alriksson, I., Andersson, J., Akerlund, T. & Unemo, M. Rapid and sensitive loop-mediated isothermal amplification test for Clostridium difficile detection challenges cytotoxin B cell test and culture as gold standard. J. Clin. Microbiol. 49, 710–711 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. O'Horo, J. C., Jones, A., Sternke, M., Harper, C. & Safdar, N. Molecular techniques for diagnosis sof Clostridium difficile infection: systematic review and meta-analysis. Mayo Clin. Proc. 87, 643–651 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim, J. et al. Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin. Microbiol. Infect. 19, 521–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Huang, H. et al. Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. Clin. Microbiol. Infect. 15, 1170–1173 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Plaza-Garrido, Á. et al. Predominance of Clostridium difficile ribotypes 012, 027 and 046 in a university hospital in Chile, 2012. Epidemiol. Infect 22, 1–4 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.S.H.M. and T.M.M. researched data for the article. All authors contributed equally to discussion of content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Mark H. Wilcox.

Ethics declarations

Competing interests

M.H.W. declares grant and/or research support from Abbott, Actelion, Alere, Astellas, Biomerieux, Cerexa, Cubist, Da Volterra, European Tissue Symposium, Merck, Sanofi-Pasteur, Summit, The Medicines Company and Qiagen, which have funded research in the past 2 years. M.H.W. has received consultancies and/or lecture honoraria in the past 2 years from Actelion, Alere, Astellas, Astra-Zeneca, Basilea, Bayer, Cubist, Durata, European Tissue Symposium, Johnson & Johnson, Merck, Nabriva, Novacta, Novartis, Optimer, Pfizer, Roche, Sanofi-Pasteur and Seres. J.S.H.M. and T.M.M. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J., Monaghan, T. & Wilcox, M. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 13, 206–216 (2016). https://doi.org/10.1038/nrgastro.2016.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing