Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease

Abstract

Active inflammatory bowel disease (IBD) is often associated with simultaneous inflammation in the skin, eyes and joints. Inflammatory disease in the liver can also occur in patients with IBD but seems to be independent of inflammation in the bowel. In this Opinion article, we propose that the hepatic complications of IBD are mediated by long-lived mucosal T cells that are recruited to the liver in response to aberrantly expressed endothelial-cell adhesion molecules and chemokines that are normally restricted to the gut. Similar mechanisms might explain why certain diseases are associated with site-specific tissue distributions and might point to new therapeutic strategies that are based on modulating tissue-specific lymphocyte homing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of a liver lobule.
Figure 2: Adhesion molecules and recruitment of lymphocytes to the liver.
Figure 3: Homing of mucosal lymphocytes in the pathogenesis of hepatic disease that is associated with inflammatory bowel disease.

Similar content being viewed by others

References

  1. Podolsky, D. K. Inflammatory bowel disease (2). N. Engl. J. Med. 325, 1008–1016 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Vierling, J. M. in Hepatology: a Textbook of liver disease, 4th edn; Ch. 40 (eds Zakim, D. & Boyer, T.D.) 1221–1272 (W.B. Saunders, Philadelphia, 2003).

    Google Scholar 

  3. Orchard, T. R., Wordsworth, B. P. & Jewell, D. P. Peripheral arthropathies in inflammatory bowel disease: their articular distribution and natural history. Gut 42, 387–391 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Camus, P., Piard, F., Ashcroft, T., Gal, A. A. & Colby, T. V. The lung in inflammatory bowel disease. Medicine (Baltimore) 72, 151–183 (1993).

    Article  CAS  Google Scholar 

  5. Broome, U. et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 38, 610–615 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman, R. W. Aetiology and natural history of primary sclerosing cholangitis — a decade of progress? Gut 32, 1433–1435 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuoco, L. et al. Onset of ulcerative colitis during immunosuppressive therapy for liver transplantation. Am. J. Gastroenterol. 92, 2134–2135 (1997).

    CAS  PubMed  Google Scholar 

  8. Cullen, S. & Chapman, R. Primary sclerosing cholangitis. Autoimmun. Rev. 2, 305–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Salmi, M., Andrew, D. P., Butcher, E. C. & Jalkanen, S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J. Exp. Med. 181, 137–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Ley, K. & Kansas, G. S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Rev. Immunol. 4, 325–335 (2004).

    Article  CAS  Google Scholar 

  13. Tanaka, Y. et al. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β. Nature 361, 79–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  15. Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nature Rev. Immunol. 4, 360–370 (2004).

    Article  CAS  Google Scholar 

  16. Aurrand-Lions, M. et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J. Immunol. 174, 6406–6415 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Johnson-Leger, C. & Imhof, B. A. Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res. 314, 93–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Parsonage, G. et al. A stromal address code defined by fibroblasts. Trends Immunol. 26, 150–156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edwards, S., Lalor, P. F., Nash, G. B., Rainger, G. E. & Adams, D. H. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes. Hepatology 41, 451–459 (2005).

    Article  PubMed  Google Scholar 

  20. von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. MacDonald, T. T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  23. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl Acad. Sci. USA 95, 258–263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Berg, E. L., McEvoy, L. M., Berlin, C., Bargatze, R. F. & Butcher, E. C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366, 695–698 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  28. Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 151, 97–110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Briskin, M. J., McEvoy, L. M. & Butcher, E. C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 363, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Shyjan, A. M., Bertagnolli, M., Kenney, C. J. & Briskin, M. J. Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the α4β7-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J. Immunol. 156, 2851–2857 (1996).

    CAS  PubMed  Google Scholar 

  31. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol. 32, 1445–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johansen, F. E. et al. Regional induction of adhesion molecules and chemokine receptors explains disparate homing of human B cells to systemic and mucosal effector sites: dispersion from tonsils. Blood 106, 593–600 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hesterberg, P. E. et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin α4β7 . Gastroenterology 111, 1373–1380 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kunkel, E. J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vicari, A. P. et al. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 7, 291–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Papadakis, K. A. et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J. Immunol. 165, 5069–5076 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hosoe, N. et al. Demonstration of functional role of TECK/CCL25 in T lymphocyte-endothelium interaction in inflamed and uninflamed intestinal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G458–G466 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Eksteen, B. et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J. Exp. Med. 200, 1511–1517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Wagner, N. et al. Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. Nature 382, 366–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Papadakis, K. A. et al. CCR9-positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn's disease. Gastroenterology 121, 246–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Lundqvist, K. & Broome, U. Differences in colonic disease activity in patients with ulcerative colitis with and without primary sclerosing cholangitis: a case control study. Dis. Colon Rectum 40, 451–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Loftus E.V. Jr et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54, 91–96 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Berg, E. L. et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med. 174, 1461–1466 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Campbell, J. J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Reiss, Y., Proudfoot, A. E., Power, C. A., Campbell, J. J. & Butcher, E. C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J. Exp. Med. 194, 1541–1547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Homey, B. et al. CCL27–CCR10 interactions regulate T cell-mediated skin inflammation. Nature Med. 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Schaerli, P. et al. A skin-selective homing mechanism for human immune surveillance T cells. J. Exp. Med. 199, 1265–1275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rott, L. S. et al. Expression of mucosal homing receptor α4β7 by circulating CD4+ cells with memory for intestinal rotavirus. J. Clin. Invest. 100, 1204–1208 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams, M. B. et al. The memory B cell subset responsible for the secretory IgA response and protective humoral immunity to rotavirus expresses the intestinal homing receptor, α4β7 . J. Immunol. 161, 4227–4235 (1998).

    CAS  PubMed  Google Scholar 

  55. Mora, J. R. et al. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med. 201, 303–316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dudda, J. C. et al. Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur. J. Immunol. 35, 1056–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Salmi, M., Kalimo, K. & Jalkanen, S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J. Exp. Med. 178, 2255–2260 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Agace, W. W. et al. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur. J. Immunol. 30, 819–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Soriano, A. et al. VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab. Invest. 80, 1541–1551 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Strober, W., Fuss, I. J. & Blumberg, R. S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Crispe, I. N. Hepatic T cells and liver tolerance. Nature Rev. Immunol. 3, 51–62 (2003).

    Article  CAS  Google Scholar 

  62. Kenna, T. et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Doherty, D. G. et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol. 163, 2314–2321 (1999).

    CAS  PubMed  Google Scholar 

  64. Ward, S. M. et al. Virus-specific CD8+ T lymphocytes within the normal human liver. Eur. J. Immunol. 34, 1526–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Marzo, A. L., Vezys, V., Williams, K., Tough, D. F. & Lefrancois, L. Tissue-level regulation of Th1 and Th2 primary and memory CD4 T cells in response to Listeria infection. J. Immunol. 168, 4504–4510 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Gowans, J. L. & Knight, E. J. The route of recirculation of lymphocytes in the rat. Proc. R. Soc. Lond. B. 159, 257–282 (1964).

    Article  CAS  PubMed  Google Scholar 

  68. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Murai, M. et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nature Immunol. 4, 154–160 (2003).

    Article  CAS  Google Scholar 

  70. Petrovic, A. et al. LPAM (α4β7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease. Blood 103, 1542–1547 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Grant, A. J., Lalor, P. F., Hubscher, S. G., Briskin, M. & Adams, D. H. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 33, 1065–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Goddard, S., Youster, J., Morgan, E. & Adams, D. H. Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am. J. Pathol. 164, 511–519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lian, Z. X. et al. Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J. Immunol. 170, 2323–2330 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Bowen, D. G. et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest. 114, 701–712 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Knolle, P. A. & Limmer, A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol. 22, 432–437 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J. Exp. Med. 185, 777–784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Uwatoku, R. et al. Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of N-acetylgalactosamine-specific sugar receptors. Gastroenterology 121, 1460–1472 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–49 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abe, M., Zahorchak, A. F., Colvin, B. L. & Thomson, A. W. Migratory responses of murine hepatic myeloid, lymphoid-related, and plasmacytoid dendritic cells to CC chemokines. Transplantation 78, 762–765 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Lalor, P. F., Shields, P., Grant, A. & Adams, D. H. Recruitment of lymphocytes to the human liver. Immunol. Cell Biol. 80, 52–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Smedsrod, B. et al. Cell biology of liver endothelial and Kupffer cells. Gut 35, 1509–1516 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsumoto, T. & Kawakami, M. The unit-concept of hepatic parenchyma—a re-examination based on angioarchitectural studies. Acta Pathol. Jpn 32 (Suppl. 2), 285–314 (1982).

    PubMed  Google Scholar 

  83. Desmet, V. J., Gerber, M., Hoofnagle, J. H., Manns, M. & Scheuer, P. J. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 19, 1513–1520 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steinhoff, G., Behrend, M., Schrader, B., Duijvestijn, A. M. & Wonigeit, K. Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia- lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2 and LFA-3. Am. J. Pathol. 142, 481–488 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Scoazec, J. Y. & Feldmann, G. The cell adhesion molecules of hepatic sinusoidal endothelial cells. J. Hepatol. 20, 296–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. McNab, G. et al. Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium. Gastroenterology 110, 522–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Lalor, P. F. et al. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J. Immunol. 169, 983–992 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Bonder, C. S. et al. Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for α4 integrin and vascular adhesion protein-1. Immunity 23, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Boisvert, J. et al. Liver-infiltrating lymphocytes in end-stage hepatitis C virus: subsets, activation status, and chemokine receptor phenotypes. J. Hepatol. 38, 67–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Shields, P. L. et al. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J. Immunol. 163, 6236–6243 (1999).

    CAS  PubMed  Google Scholar 

  92. Murai, M. et al. Active participation of CCR5+CD8+ T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J. Clin. Invest. 104, 49–57 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Coulomb-L'Hermin, A. et al. Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells. Proc. Natl Acad. Sci. USA 96, 8585–8590 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Isse, K. et al. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology 41, 506–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Narumi, S. et al. Expression of IFN-inducible protein-10 in chronic hepatitis. J. Immunol. 158, 5536–5544 (1997).

    CAS  PubMed  Google Scholar 

  97. Sato, T. et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J. Immunol. 174, 277–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Curbishley, S. M., Eksteen, B., Gladue, R. P., Lalor, P. & Adams, D. H. CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am. J. Pathol. 167, 887–899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arvilommi, A. M., Salmi, M., Kalimo, K. & Jalkanen, S. Lymphocyte binding to vascular endothelium in inflamed skin revisited: a central role for vascular adhesion protein-1 (VAP-1). Eur. J. Immunol. 26, 825–833 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Salmi, M., Rajala, P. & Jalkanen, S. Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J. Clin. Invest. 99, 2165–2172 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grant, A. J., Lalor, P. F., Salmi, M., Jalkanen, S. & Adams, D. H. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359, 150–157 (2002).

    Article  PubMed  Google Scholar 

  103. Connor, E. M., Eppihimer, M. J., Morise, Z., Granger, D. N. & Grisham, M. B. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J. Leukoc. Biol. 65, 349–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Hillan, K. J. et al. Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease. Liver 19, 509–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Salter-Cid, L. M. et al. Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J. Pharmacol. Exp. Ther. 315, 553–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Zabel, B. A. et al. Human G protein-coupled receptor GPR-9–6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J. Exp. Med. 190, 1241–1256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grant, A. J. et al. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am. J. Pathol. 160, 1445–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Alexander, J. S. & Ando, T. Density-dependent control of MAdCAM-1 and chronic inflammation. Focus on “Mechanisms of MAdCAM-1 gene expression in human intestinal microvascular endothelial cells”. Am. J. Physiol. Cell Physiol. 288, C243–C244 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Fu, M. et al. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene 315, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Grant, A. Miles, S. Curbishley and P. Lalor, who have contributed to work discussed in this article, and M. Briskin, S. Jalkanen and M. Salmi, who have contributed intellectually to the development of the ideas. B.E. is funded by Fellowships from Core and the Medical Research Council, UK, and the work has also been supported by funding from the European Commission, the Wellcome Trust and a research grant from Pfizer Inc. We would also like to thank C. Buckley, A. Rickinson and M. Salmon for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Adams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Adams's laboratory

Glossary

Autoimmune hepatitis

Persistent inflammation of the liver that is characterized by interface hepatitis, hypergammaglobulinaemia and autoantibodies in the serum.

Endothelins

A family of peptides (endothelin 1, endothelin 2 and endothelin 3) that are produced in various tissues. They function as modulators of vasomotor tone, cell proliferation and hormone production.

Porta hepatis

A transverse fissure on the abdominal surface of the liver, where the portal vein, hepatic artery and hepatic ducts enter the liver. Also known as the hilum.

Primary sclerosing cholangitis

A persistent chronic inflammatory disease that is focused in the intrahepatic and extrahepatic bile ducts and is often associated with inflammatory bowel disease.

Sieve plates

A cluster of small holes (fenestrae) in a liver sinusoidal endothelial cell, which is thought to facilitate the diffusion of molecules between the hepatic sinusoid and the underlying space of Disse, which is where solutes can interact with hepatocytes.

Space of Disse

Located between the hepatocytes and the sinusoid, the space of Disse contains hepatic stellate cells (myofibroblasts) and a network of reticular fibres that hold the hepatocytes together. Microvilli that extend from the hepatocytes increase the surface area exposed in the space of Disse.

Thromboxanes

Arachidonic-acid metabolites that are produced by the action of thromboxane synthetase on prostaglandin cyclic endoperoxides. They cause platelet aggregation, vasoconstriction and have pro-inflammatory properties.

Weibel–Palade bodies

(WPBs). Rod-shaped secretory granules that are found in endothelial cells. Exocytosis of WPBs in response to pro-inflammatory stimuli delivers the adhesive protein von Willebrand factor and the leukocyte adhesion molecule platelet selectin to the endothelial-cell surface, where they have important roles in vascular haemostasis and inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D., Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6, 244–251 (2006). https://doi.org/10.1038/nri1784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing