Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human dendritic cell deficiency: the missing ID?

Key Points

  • Dendritic cells (DCs) are crucial for the induction of immune responses in mice, but whether they are similarly essential in humans remains largely untested owing to the lack of appropriate models.

  • Many human immunodeficiency states are known, but DC deficiency was only recently described. It is now appreciated that there are at least two forms of DC deficiency: due to mutation of GATA-binding factor 2 (GATA2) or mutation of interferon regulatory factor 8 (IRF8). Both lead to increased susceptibility to intracellular pathogens, notably mycobacteria.

  • GATA2 mutation causes DC, monocyte, B and NK lymphoid (DCML) deficiency, which is characterized by the loss of DCs, monocytes, B cells and NK cells. It has been described in about 30 patients worldwide, and these patients progress from immunodeficiency to global bone marrow failure.

  • IRF8 mutations have been reported in three patients. The recessive mutation K108E causes monocyte and DC deficiency with myeloproliferation, showing close similarities to IRF8-deficient mice.

  • The study of DC deficiency has further potential to illuminate the genetic factors and cellular pathways of DC differentiation in humans and to uncover the relationship between DCs and monocytes.

Abstract

Animal models and human in vitro systems indicate that dendritic cells (DCs) have a crucial role in priming naive T cells, but just how important are they in the intact human? Recent descriptions of human DC deficiency have begun to shed light on this question and to illuminate other puzzles of human DC biology, including their haematopoietic origin, developmental regulation and homeostatic equilibrium with other leukocytes. In this Review, we explore the recently described DC deficiency syndromes, discussing what these have taught us with regard to DC function in humans and the important issues that remain unsolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC classification in mice and humans.
Figure 2: Altered stem cell compartment in DC deficiency.

Similar content being viewed by others

References

  1. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139, 380–397 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, Y. J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nature Immunol. 2, 585–559 (2001).

    Article  CAS  Google Scholar 

  3. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bar-On, L. & Jung, S. Defining dendritic cells by conditional and constitutive cell ablation. Immunol. Rev. 234, 76–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Merad, M. & Manz, M. G. Dendritic cell homeostasis. Blood 113, 3418–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmid, M. A., Kingston, D., Boddupalli, S. & Manz, M. G. Instructive cytokine signals in dendritic cell lineage commitment. Immunol. Rev. 234, 32–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, K. & Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol. 8, 1207–1216 (2007).

    Article  CAS  Google Scholar 

  10. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol. 8, 1217–1226 (2007).

    Article  CAS  Google Scholar 

  11. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009). An experimental synthesis of the murine DC developmental pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer, A. Human primary immunodeficiency diseases. Immunity 27, 835–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Bustamante, J. et al. Novel primary immunodeficiencies revealed by the investigation of paediatric infectious diseases. Curr. Opin. Immunol. 20, 39–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037–6046 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. MacDonald, K. P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512–4520 (2002). The first complete characterization of blood DCs in humans.

    Article  CAS  PubMed  Google Scholar 

  19. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1283–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 17 May 2010 (doi:10.1084/jem.20092140).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guilliams, M. et al. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur. J. Immunol. 40, 2089–2094 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Watowich, S. S. & Liu, Y. J. Mechanisms regulating dendritic cell specification and development. Immunol. Rev. 238, 76–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collin, M. P. et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203, 27–33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanitakis, J., Morelon, E., Petruzzo, P., Badet, L. & Dubernard, J. M. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp. Dermatol. 20, 145–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature Immunol. 11, 585–593 (2010). This study revises the classical model of human haematopoiesis by demonstrating that DCs and monocytes can be generated from cells with lympho–myeloid potential in addition to conventional GMPs.

    Article  CAS  Google Scholar 

  31. Autissier, P., Soulas, C., Burdo, T. H. & Williams, K. C. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A 77A, 410–419 (2010).

    Google Scholar 

  32. Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011). A description of the loss of DCs in DCML deficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vinh, D. C. et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115, 1519–1529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calvo, K. R. et al. Myelodysplasia in autosomal dominant and sporadic monocytopenia immunodeficiency syndrome: diagnostic features and clinical implications. Haematologica 20 Apr 2011 (doi:10.3324/haematol.2011.041152).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hsu, A. P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 13 Jun 2011 (doi:10.1182/blood-2011-05-356352).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dickinson, R. E. et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 15 Jun 2011 (doi:10.1182/blood-2011-06-360313). References 35 and 36 describe the genetic defect in DCML deficiency.

    Article  CAS  PubMed  Google Scholar 

  37. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scott, H. S. et al. GATA2 is a new predisposition gene for familial myelodyplastic syndrome (MDS) and acute myeloid leukaemia (AML). Blood (ASH Annual Meeting Abstracts) 116, LBA3 (2010).

    Article  Google Scholar 

  41. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174, 2573–2581 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Tailor, P., Tamura, T., Morse, H. C. & Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111, 1942–1945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011). This study reports the discovery of DC deficiency in association with IRF8 mutation in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Giese, N. A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med. 186, 1535–1546 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turcotte, K. et al. A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. J. Exp. Med. 201, 881–890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med. 196, 1415–1425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mittag, D. et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. 186, 6207–6217 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Pannicke, U. et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nature Genet. 41, 101–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lagresle-Peyrou, C. et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nature Genet. 41, 106–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Emile, J. F. et al. Langerhans cell deficiency in reticular dysgenesis. Blood 96, 58–62 (2000).

    CAS  PubMed  Google Scholar 

  54. Hernandez, P. A. et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nature Genet. 34, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Siedlar, M. et al. Familial occurrence of warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. Arch. Immunol. Ther. Exp. 56, 419–425 (2008).

    Article  CAS  Google Scholar 

  56. Tassone, L. et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood 116, 4870–4873 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Goldman, F. D. et al. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the ikaros gene. Pediatr. Blood Cancer 5 May 2011 (doi:10.1002/pbc.23160).

    Article  Google Scholar 

  58. Boztug, K. & Klein, C. Genetic etiologies of severe congenital neutropenia. Curr. Opin. Pediatr. 23, 21–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Reith, W. & Mach, B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol. 19, 331–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nature Rev. Immunol. 10, 182–192 (2010).

    Article  CAS  Google Scholar 

  61. Cisse, B. et al. Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saito, M. et al. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells. J. Exp. Med. 208, 235–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sapoznikov, A. et al. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J. Exp. Med. 204, 1923–1933 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koyama, M. et al. Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells. Blood 113, 2088–2095 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wolf, A. I. et al. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J. Immunol. 182, 871–879 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y. & Colonna, M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity 33, 955–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel, S. Y., Doffinger, R., Barcenas-Morales, G. & Kumararatne, D. S. Genetically determined susceptibility to mycobacterial infection. J. Clin. Pathol. 61, 1006–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Vermi, W. et al. Spontaneous regression of highly immunogenic Molluscum contagiosum virus (MCV)-induced skin lesions is associated with plasmacytoid dendritic cells and IFN-DC infiltration. J. Invest. Dermatol. 131, 426–434 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Woodworth, C. D. HPV innate immunity. Front. Biosci. 7, D2058–D2071 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Dalloul, A. et al. Severe herpes virus (HSV-2) infection in two patients with myelodysplasia and undetectable NK cells and plasmacytoid dendritic cells in the blood. J. Clin. Virol. 30, 329–336 (2004).

    Article  PubMed  Google Scholar 

  72. Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moody, D. B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Birnberg, T. et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29, 986–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009). References 74 and 75 describe the myeloproliferative state caused by excess FLT3L in states of DC depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Darrasse-Jeze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206, 1853–1862 (2009). This study describes a model of FLT3L-dependent DC–T Reg cell co-regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Shigematsu, H. et al. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Luc, S., Buza-Vidas, N. & Jacobsen, S. E. Delineating the cellular pathways of hematopoietic lineage commitment. Semin. Immunol. 20, 213–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  81. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Luc, S. et al. Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood 111, 3424–3434 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Schakel, K. et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 17, 289–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Schakel, K. et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 24, 767–777 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G. & Lowes, M. A. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517–2525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ochoa, M. T., Loncaric, A., Krutzik, S. R., Becker, T. C. & Modlin, R. L. “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J. Invest. Dermatol. 128, 2225–2231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Angel, C. E. et al. CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int. Immunol. 19, 1271–1279 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Angel, C. E. et al. Distinctive localization of antigen presenting cells in human lymph nodes. Blood 113, 1257–1267 (2008).

    Article  PubMed  CAS  Google Scholar 

  89. O'Keeffe, M. et al. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101, 1453–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Medical Research Council, the Wellcome Trust, Leukaemia and Lymphoma Research, the Histiocytosis Association, the Histiocytosis Research Trust, the Newcastle Healthcare Charity and the Newcastle upon Tyne Hospitals NHS Charity. We thank F. Ginhoux for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Collin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collin, M., Bigley, V., Haniffa, M. et al. Human dendritic cell deficiency: the missing ID?. Nat Rev Immunol 11, 575–583 (2011). https://doi.org/10.1038/nri3046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing