Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors

Key Points

  • Mycobacterium tuberculosis survives in the host in antigen-presenting cells (APCs) such as macrophages and dendritic cells.

  • APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4+ T cells, and this process is essential for containing M. tuberculosis infection.

  • Immune evasion allows M. tuberculosis to establish persistent or latent infection in APCs.

  • M. tuberculosis infection of macrophages results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator (CIITA) and MHC class II molecule expression and of MHC class II antigen presentation, providing a mechanism for immune evasion.

  • The TLR2-dependent reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted for the purposes of immune evasion.

  • Inhibition of antigen presentation creates a niche for M. tuberculosis survival in infected APCs and for its evasion of recognition by CD4+ T cells.

Abstract

Mycobacterium tuberculosis survives in antigen-presenting cells (APCs) such as macrophages and dendritic cells. APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4+ T cells, and this process is essential to contain M. tuberculosis infection. Immune evasion allows M. tuberculosis to establish persistent or latent infection in macrophages and results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator expression, MHC class II molecule expression and antigen presentation. This reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted to create a niche for survival in infected macrophages and evasion of recognition by CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The host response to Mycobacterium tuberculosis infection.
Figure 2: Toll-like receptor 2 ligands expressed by Mycobacterium tuberculosis.
Figure 3: Major histocompatibility complex class II synthesis and function.
Figure 4: Inhibition of major histocompatibility complex class II by Mycobacterium tuberculosis through Toll-like receptor signalling.
Figure 5: The different responses of macrophages and dendritic cells to Toll-like receptor signalling.

Similar content being viewed by others

References

  1. Barnes, P. F., Bloch, A. B., Davidson, P. T. & Snider, D. E. Jr. Tuberculosis in patients with human immunodeficiency virus infection. N. Engl. J. Med. 324, 1644–1650 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Ladel, C. H., Daugelat, S. & Kaufmann, S. H. E. Immune response to Mycobacterium bovis bacille Calmette Guérin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur. J. Immunol. 25, 377–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Mogues, T., Goodrich, M. E., Ryan, L., LaCourse, R. & North, R. J. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193, 271–280 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).

    CAS  PubMed  Google Scholar 

  5. Scanga, C. A. et al. Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J. Exp. Med. 192, 347–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Repique, C. J. et al. Susceptibility of mice deficient in the MHC class II transactivator to infection with Mycobacterium tuberculosis. Scand. J. Immunol. 58, 15–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Gallegos, A. M., Pamer, E. G. & Glickman, M. S. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med. 205, 2359–2368 (2008). This work uses transgenic mice expressing a T cell receptor specific for the M. tuberculosis antigen early secretory antigenic target 6 (ESAT6) along with adoptive transfer models to demonstrate the activation of M. tuberculosis -specific T cells in pulmonary lymph nodes and their subsequent trafficking to the lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf, A. J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008). This study uses transgenic mice expressing a T cell receptor specific for a M. tuberculosis antigen 85B to show the initial activation of M. tuberculosis -specific T cells in lung-draining lymph nodes and to define a lag period before antigen is presented to launch T cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell, M. S. et al. A reduced antigen load in vivo, rather than weak inflammation, causes a substantial delay in CD8+ T cell priming against Mycobacterium bovis (bacillus Calmette-Guerin). J. Immunol. 179, 211–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Ferwerda, G. et al. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 1, e34 (2005). This article compares the roles of NOD2 and TLR2 in responses to M. tuberculosis .

    Article  CAS  PubMed Central  Google Scholar 

  11. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003). An investigation that defines an important role for DC-SIGN as a receptor for M. tuberculosis .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flynn, J. L. et al. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Dalton, D. K. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739–1742 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993). References 12, 13 and 14 describe the use of IFNγ-deficient mice to demonstrate the key role of IFNγ in resistance to M. tuberculosis infection.

    Article  CAS  PubMed  Google Scholar 

  15. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. MacMicking, J. D., Taylor, G. A. & McKinney, J. D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ottenhoff, T. H., Kumararatne, D. & Casanova, J. L. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol. Today 19, 491–494 (1998). A review of the seminal publications on the essential role of IFNγ in human resistance to mycobacterial infection.

    Article  CAS  PubMed  Google Scholar 

  18. Banaiee, N., Kincaid, E. Z., Buchwald, U., Jacobs, W. R. Jr. & Ernst, J. D. Potent inhibition of macrophage responses to IFN-γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J. Immunol. 176, 3019–3027 (2006).

    CAS  PubMed  Google Scholar 

  19. Fortune, S. M. et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms. J. Immunol. 172, 6272–6280 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kincaid, E. Z. & Ernst, J. D. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-γ without inhibiting STAT1 function. J. Immunol. 171, 2042–2049 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kincaid, E. Z. et al. Codominance of TLR2-dependent and TLR2-independent modulation of MHC class II in Mycobacterium tuberculosis infection in vivo. J. Immunol. 179, 3187–3195 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ting, L. M., Kim, A. C., Cattamanchi, A. & Ernst, J. D. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163, 3898–3906 (1999). References 20 and 22 report that M. tuberculosis inhibits IFNγ-stimulated induction of certain genes, and the authors dissect the signalling mechanisms that are involved.

    CAS  PubMed  Google Scholar 

  23. Pai, R. K., Convery, M., Hamilton, T. A., Boom, W. H. & Harding, C. V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171, 175–184 (2003). This work defines a mechanism for the inhibition of MHC class II molecule expression that is mediated by M. tuberculosis or M. tuberculosis lipoprotein through the TLR2-dependent inhibition of CIITA induction by IFNγ.

    Article  CAS  PubMed  Google Scholar 

  24. Pai, R. K. et al. Prolonged Toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect. Immun. 72, 6603–6614 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pennini, M. E. et al. CCAAT/enhancer-binding protein β and δ binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. J. Immunol. 179, 6910–6918 (2007). This paper reports a role for C/EBPβ and C/EBPδ in transcriptional control of CIITA through their binding to CIITA promoters and shows that this mechanism is induced in response to lipoprotein TLR2 agonists from M. tuberculosis .

    Article  CAS  PubMed  Google Scholar 

  26. Pennini, M. E., Pai, R. K., Schultz, D. C., Boom, W. H. & Harding, C. V. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol. 176, 4323–4330 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lafuse, W. P., Alvarez, G. R., Curry, H. M. & Zwilling, B. S. Mycobacterium tuberculosis and Mycobacterium avium inhibit IFN-γ-induced gene expression by TLR2-dependent and independent pathways. J. Interferon Cytokine Res. 26, 548–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y., Curry, H. M., Zwilling, B. S. & Lafuse, W. P. Mycobacteria inhibition of IFN-γ induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J. Immunol. 174, 5687–5694 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Vazquez, N., Greenwell-Wild, T., Rekka, S., Orenstein, J. M. & Wahl, S. M. Mycobacterium avium-induced SOCS contributes to resistance to IFN-γ-mediated mycobactericidal activity in human macrophages. J. Leukoc. Biol. 80, 1136–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hussain, S., Zwilling, B. S. & Lafuse, W. P. Mycobacterium avium infection of mouse macrophages inhibits IFN-γ Janus kinase-STAT signaling and gene induction by down-regulation of the IFN-γ receptor. J. Immunol. 163, 2041–2048 (1999).

    CAS  PubMed  Google Scholar 

  31. Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noss, E. H. et al. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19 kD lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167, 910–918 (2001). This work shows the ability of M. tuberculosis and M. tuberculosis lipoprotein LpqH to use TLR2 dependent mechanisms to inhibit IFNγ-induced expression of MHC class II molecules, suggesting a mechanism for immune evasion.

    Article  CAS  PubMed  Google Scholar 

  33. Gercken, J., Pryjma, J., Ernst, M. & Flad, H. D. Defective antigen presentation by Mycobacterium tuberculosis infected monocytes. Infect. Immun. 62, 3472–3478 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hmama, Z., Gabathuler, R., Jefferies, W. A., de Jong, G. & Reiner, N. E. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J. Immunol. 161, 4882–4893 (1998).

    CAS  PubMed  Google Scholar 

  35. Noss, E. H., Harding, C. V. & Boom, W. H. Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell. Immunol. 201, 63–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Pancholi, P., Mirza, A., Bhardwaj, N. & Steinman, R. M. Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260, 984–986 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. VanHeyningen, T. K., Collins, H. L. & Russell, D. G. IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. J. Immunol. 158, 330–337 (1997).

    CAS  PubMed  Google Scholar 

  38. Wojciechowski, W., DeSanctis, J., Skamene, E. & Radzioch, D. Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette-Guerin involves class II transactivator and depends on the Nramp1 gene. J. Immunol. 163, 2688–2696 (1999).

    CAS  PubMed  Google Scholar 

  39. De Lerma Barbaro, A. et al. Distinct regulation of HLA class II and class I cell surface expression in the THP-1 macrophage cell line after bacterial phagocytosis. Eur. J. Immunol. 29, 499–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Gehring, A. J., Dobos, K. M., Belisle, J. T., Harding, C. V. & Boom, W. H. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol. 173, 2660–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Pecora, N. D., Gehring, A. J., Canaday, D. H., Boom, W. H. & Harding, C. V. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol. 177, 422–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291, 1544–1547 (2001). This study demonstrates a role for TLR2 in responses to mycobacteria and mycobacterial lipoproteins, including the induction of antimicrobial responses.

    Article  CAS  PubMed  Google Scholar 

  43. Jung, S. B. et al. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect. Immun. 74, 2686–2696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007). This work characterizes the ligand-dependent assembly of TLR2–TLR1 heterodimers and the crystal structure of the receptor–ligand complex.

    Article  CAS  PubMed  Google Scholar 

  45. Tapping, R. I. & Tobias, P. S. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res. 9, 264–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wyllie, D. H. et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J. Immunol. 165, 7125–7132 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Rezwan, M., Grau, T., Tschumi, A. & Sander, P. Lipoprotein synthesis in mycobacteria. Microbiology 153, 652–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sankaran, K. & Wu, H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269, 19701–19706 (1994).

    CAS  PubMed  Google Scholar 

  51. Sander, P. et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 52, 1543–1552 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hussain, M., Ichihara, S. & Mizushima, S. Mechanism of signal peptide cleavage in the biosynthesis of the major lipoprotein of the Escherichia coli outer membrane. J. Biol. Chem. 257, 5177–5182 (1982).

    CAS  PubMed  Google Scholar 

  53. Sutcliffe, I. C. & Harrington, D. J. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 28, 645–659 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755 (1999).

    CAS  PubMed  Google Scholar 

  55. Means, T. K. et al. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  56. Underhill, D. M., Ozinsky, A., Smith, K. D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA 96, 14459–14463 (1999). This study demonstrates the role of TLR2 in recognition of M. tuberculosis .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, B. W. et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukoc. Biol. 69, 1036–1044 (2001).

    CAS  PubMed  Google Scholar 

  58. Pitarque, S. et al. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb.) 88, 560–565 (2008).

    Article  CAS  Google Scholar 

  59. Nigou, J. et al. Mannan chain length controls lipoglycans signaling via and binding to TLR2. J. Immunol. 180, 6696–6702 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Gilleron, M., Nigou, J., Nicolle, D., Quesniaux, V. & Puzo, G. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2. Chem. Biol. 13, 39–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Gilleron, M., Bala, L., Brando, T., Vercellone, A. & Puzo, G. Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterization of the acyl- and glyco-forms. J. Biol. Chem. 275, 677–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53, 391–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hsu, F. F., Turk, J., Owens, R. M., Rhoades, E. R. & Russell, D. G. Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Guerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs. J. Am. Soc. Mass Spectrom. 18, 466–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Sandor, F. et al. Importance of extra- and intracellular domains of TLR1 and TLR2 in NFκB signaling. J. Cell Biol. 162, 1099–1110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dao, D. N. et al. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun. 72, 2067–2074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nigou, J. et al. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 4, 945–953 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Bowdish, D. M. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 5, e1000474 (2009). This investigation shows signalling of trehalose dimycolate through TLR2 and the roles of CD14 and MARCO as accessory receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manicassamy, S. & Pulendran, B. Modulation of adaptive immunity with Toll-like receptors. Semin. Immunol. 21, 185–193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chu, R. S. et al. CpG oligodeoxynucleotides down-regulate macrophage class II MHC antigen processing. J. Immunol. 163, 1188–1194 (1999).

    CAS  PubMed  Google Scholar 

  70. Steeg, P. S., Johnson, H. M. & Oppenheim, J. J. Regulation of murine macrophage Ia antigen expression by an immune interferon-like lymphokine: inhibitory effect of endotoxin. J. Immunol. 129, 2402–2406 (1982).

    CAS  PubMed  Google Scholar 

  71. Sicher, S. C., Vazquez, M. A. & Lu, C. Y. Inhibition of macrophage Ia expression by nitric oxide. J. Immunol. 153, 1293–1300 (1994).

    CAS  PubMed  Google Scholar 

  72. Koerner, T. J., Hamilton, T. A. & Adams, D. O. Suppressed expression of surface Ia on macrophages by lipopolysaccaride: evidence for regulation at the level of accumulation of mRNA. J. Immunol. 139, 239–243 (1987).

    CAS  PubMed  Google Scholar 

  73. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999). A study showing the recruitment of TLR2 to phagosomes, which allows localization of TLR2 at the site of expression of TLR2 agonists from microorganisms.

    Article  CAS  PubMed  Google Scholar 

  74. Neyrolles, O. et al. Lipoprotein access to MHC class I presentation during infection of murine macrophages with live mycobacteria. J. Immunol. 166, 447–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Beatty, W. L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Beatty, W. L. & Russell, D. G. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infect. Immun. 68, 6997–7002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736 (1999). This work demonstrates that TLR2 recognizes lipoproteins from M. tuberculosis , including LpqH.

    Article  CAS  PubMed  Google Scholar 

  78. Stenger, S. & Modlin, R. L. Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curr. Opin. Immunol. 14, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Schorey, J. S. & Bhatnagar, S. Exosome function: from tumor immunology to pathogen biology. Traffic 9, 871–881 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Reiling, N. et al. Cutting edge: Toll-like receptor (TLR) 2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169, 3480–3484 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Drennan, M. B. et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am. J. Pathol. 164, 49–57 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heldwein, K. A. et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J. Leukoc. Biol. 74, 277–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Sugawara, I. et al. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47, 327–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Abel, B. et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169, 3155–3162 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Bafica, A. et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202, 1715–1724 (2005). This article is one of the many reports on the role of TLRs in resistance to M. tuberculosis . This study nicely shows the roles of TLR2 and TLR9 and finds that mice deficient for both TLR2 and TLR9 are more susceptible to M. tuberculosis infection than mice with a single deficiency in either receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fremond, C. M. et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179, 1178–1189 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Fremond, C. M. et al. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 114, 1790–1799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feng, C. G. et al. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171, 4758–4764 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kamath, A. B., Alt, J., Debbabi, H. & Behar, S. M. Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71, 4112–4118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holscher, C. et al. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur. J. Immunol. 38, 680–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Ben-Ali, M., Barbouche, M. R., Bousnina, S., Chabbou, A. & Dellagi, K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol. 11, 625–626 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bochud, P. Y., Hawn, T. R. & Aderem, A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 170, 3451–3454 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ogus, A. C. et al. The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23, 219–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Reith, W. & Boss, J. M. New dimensions of CIITA. Nature Immunol. 9, 713–714 (2008).

    Article  CAS  Google Scholar 

  97. Reith, W. & Mach, B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol. 19, 331–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Masternak, K. et al. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 14, 1156–1166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Steimle, V., Otten, L. A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993). References 99 and 100 are seminal reports of the key role of CIITA in transcriptional regulation of MHC class II genes.

    Article  CAS  PubMed  Google Scholar 

  101. Harton, J. A. & Ting, J. P. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol. Cell Biol. 20, 6185–6194 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boss, J. M. & Jensen, P. E. Transcriptional regulation of the MHC class II antigen presentation pathway. Curr. Opin. Immunol. 15, 105–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Chang, C.H. & Flavell, R. A. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J. Exp. Med. 181, 765–767 (1995). This work uses transfection of cells to express CIITA and demonstrate that CIITA regulates not only MHC class II molecules but also other molecules involved in the MHC class II antigen processing and presentation pathway.

    Article  CAS  PubMed  Google Scholar 

  104. Chang, C. H., Guerder, G., Hong, S. C., van Ewijk, W. & Flavell, R. A. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4, 167–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Muhlethaler-Mottet, A., Otten, L. A., Steimle, V. & Mach, B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16, 2851–2860 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pai, R. K., Askew, D., Boom, W. H. & Harding, C. V. Regulation of class II MHC expression in APCs: roles of types, I, III, and IV class II transactivator. J. Immunol. 169, 1326–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Kielar, M. L., Sicher, S. C., Penfield, J. G., Jeyarajah, D. R. & Lu, C. Y. Nitric oxide inhibits INFγ-induced increases in CIITA mRNA abundance and activation of CIITA dependent genes–class II MHC, Ii and H-2M. Inflammation 24, 431–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Jang, S., Uematsu, S., Akira, S. & Salgame, P. IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition. J. Immunol. 173, 3392–3397 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Nagabhushanam, V. et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-γ. J. Immunol. 171, 4750–4757 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Wolf, A. J. et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179, 2509–2519 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Gehring, A. J. et al. The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and FcγR1 on human macrophages through Toll-like receptor 2. Infect. Immun. 71, 4487–4497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramachandra, L., Noss, E., Boom, W. H. & Harding, C. V. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194, 1421–1432 (2001). This study uses subcellular fractionation to show that M. tuberculosis peptide–MHC class II complexes are formed in phagosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Majlessi, L. et al. Inhibition of phagosome maturation by mycobacteria does not interfere with presentation of mycobacterial antigens by MHC molecules. J. Immunol. 179, 1825–1833 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Ramachandra, L. et al. Phagosomal processing of Mycobacterium tuberculosis antigen 85B is modulated independently of mycobacterial viability and phagosome maturation. Infect. Immun. 73, 1097–1105 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gonzalez-Juarrero, M., Shim, T. S., Kipnis, A., Junqueira-Kipnis, A. P. & Orme, I. M. Dynamics of macrophage cell populations during murine pulmonary tuberculosis. J. Immunol. 171, 3128–3135 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Humphreys, I. R. et al. A role for dendritic cells in the dissemination of mycobacterial infection. Microbes Infect. 8, 1339–1346 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Pecora, N. D. et al. Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell. Immunol. 254, 94–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reljic, R. et al. Time course of mycobacterial infection of dendritic cells in the lungs of intranasally infected mice. Tuberculosis 85, 81–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997). This article demonstrates that the mechanism for increased MHC class II molecule expression on DC maturation involves enhanced stability of MHC class II molecules, whereas protein synthesis is only transiently increased. This reveals that the primary mechanism for maintaining enhanced MHC class II molecule expression on DCs is post-translational rather than transcriptional.

    Article  CAS  PubMed  Google Scholar 

  122. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Askew, D., Chu, R. S., Krieg, A. M. & Harding, C. V. CpG DNA induces maturation of dendritic cells with distinct effects on nascent and recycling MHC-II antigen processing mechanisms. J. Immunol. 165, 6889–6895 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006). References 124 and 125 reveal that regulation of MHC class II molecule stability and expression in DCs involves regulation of MHC class II molecule ubiquitylation, providing a mechanism for the regulation of MHC class II molecule expression in the context of DC maturation.

    Article  CAS  PubMed  Google Scholar 

  126. De Gassart, A. et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl Acad. Sci. USA 105, 3491–3496 (2008). This work shows that a ubiquitin E3 ligase, MARCHI, is down-regulated during dendritic cell maturation, clarifying the mechanism for ubiquitin-mediated control of MHC class II stability and expression in dendritic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Landmann, S. et al. Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class II transactivator (CIITA) expression. J. Exp. Med. 194, 379–391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hava, D. L. et al. Evasion of peptide, but not lipid antigen presentation, through pathogen-induced dendritic cell maturation. Proc. Natl Acad. Sci. USA 105, 11281–11286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Murray, R. A., Siddiqui, M. R., Mendillo, M., Krahenbuhl, J. & Kaplan, G. Mycobacterium leprae inhibits dendritic cell activation and maturation. J. Immunol. 178, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Uehori, J. et al. Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J. Immunol. 174, 7096–7103 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guéerin: involvement of Toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Inaba, K., Inaba, M., Naito, M. & Steinman, R. M. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178, 479–488 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jiao, X. et al. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol. 168, 1294–1301 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Pedroza-Gonzalez, A. et al. In situ analysis of lung antigen-presenting cells during murine pulmonary infection with virulent Mycobacterium tuberculosis. Int. J. Exp. Pathol. 85, 135–145 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ordway, D., Henao-Tamayo, M., Orme, I. M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J. Immunol. 175, 3873–3881 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Hamerman, J. A. & Aderem, A. Functional transitions in macrophages during in vivo infection with Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 167, 2227–2233 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Krutzik, S. R. & Modlin, R. L. The role of Toll-like receptors in combating mycobacteria. Semin. Immunol. 16, 35–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Coulombe, F. et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206, 1709–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pandey, A. K. et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 5, e1000500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wearsh, P. & Cresswell, P. Antigen processing and presentation. Poster. Nature Rev. Immunol. 9 (2009).

  142. Drage, M. G. et al. Differences in expression of TLR2 and its co-receptors determine responses of antigen presenting cells to lipoproteins of Mycobacterium tuberculosis. Cell. Immunol. 258, 29–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is supported by US National Institutes of Health grants AI035726, AI034343 and AI069085 to C.V.H. and grants HL055967 and AI027243 to W.H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford V. Harding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Mycobacterium bovis bacille Calmette—Guérin

Mycobacterium smegmatis

Mycobacterium tuberculosis

FURTHER INFORMATION

Clifford V. Harding's homepage

Glossary

CD4+ T cell

A T cell that expresses the CD4 receptor. These cells recognize antigens that are presented on the surface of host cells by MHC class II molecules.

CD8+ T cell

A T cell that expresses the CD8 receptor. These cells recognize antigens that are presented on the surface of host cells by MHC class I molecules, leading to host cell destruction, and are therefore also known as cytotoxic T cells.

γδ T cell

A T cell that expresses the γδ T cell receptor. Although the exact function of γδ T cells is unknown, it has been suggested that mucosal γδ T cells are involved in innate immune responses

Granuloma

An organized structure that comprises lymphocytes, macrophages, neutrophils and, sometimes, fibroblasts and that often has a necrotic centre, which arises in response to continued antigenic stimulation in the presence of macrophages (as occurs, for example, in M. tuberculosis infection).

Toll-like receptor

A membrane-spanning protein that recognizes conserved ligands on pathogens, such as flagellin, lipopolysaccharide or DNA, and that is therefore a key recognition molecule in the host innate immune response.

Tuberculin skin test

A method of diagnosing M. tuberculosis infection by injecting TB antigens intradermally. A delayed-type hypersensitivity response, dependent on the presence of sensitized T cells, is seen in those infected with M. tuberculosis. This does not distinguish latent infection from active TB.

Pathogen-associated molecular pattern

A small molecular motif that is conserved across microbial species and engages innate immune receptors, in particular TLRs. Examples include lipopolysaccharide, peptidoglycan and flagellin.

Natural killer cell

A lymphocyte that does not express the T cell receptor or B cell receptor and that confers innate immunity.

T helper 2 cell

A type of activated T helper cell that participates in phagocytosis-independent responses and downregulates pro-inflammatory responses that are induced by T helper 1 cells. T helper 2 cells secrete IL-4, IL-5 and IL-6.

Regulatory T cell

A CD4+ T cell that naturally expresses high levels of CD25 (the IL-2 receptor subunit-α) and the transcription factor forkhead box P3 (FOXP3) and that has suppressive regulatory activity towards effector T cells and other immune cells.

Pyogenic bacterium

A pus-forming bacterium that is associated with exudative inflammation and neutrophil recruitment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, C., Boom, W. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8, 296–307 (2010). https://doi.org/10.1038/nrmicro2321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing