Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TIMELINE

70-year legacy of the Framingham Heart Study

Abstract

The Framingham Heart Study (FHS) was established in 1948 to improve understanding of the epidemiology of coronary heart disease (CHD) in the USA. In 1961, seminal work identified major risk factors for CHD (high blood pressure, high cholesterol levels and evidence on the electrocardiogram of left ventricular hypertrophy), which later formed the basis for multivariable 10-year and 30-year risk-prediction algorithms. The FHS cohorts now comprise three generations of participants (n ≈ 15,000) and two minority cohorts. The FHS cohorts are densely phenotyped, with recurring follow-up examinations and surveillance for cardiovascular and non-cardiovascular end points. Assessment of subclinical disease and physiological profiling of these cohorts (with the use of echocardiography, ambulatory electrocardiographic monitoring, exercise stress testing, cardiac CT, heart and brain MRI, serial vascular tonometry and accelerometry) have been performed repeatedly. Over the past decade, the FHS cohorts have undergone deep ‘omics’ profiling (including whole-genome sequencing, DNA methylation analysis, transcriptomics, high-throughput proteomics and metabolomics, and microbiome studies). The FHS is a rich, longitudinal, transgenerational and deeply phenotyped cohort study with a sustained focus on state-of-the-art epidemiological methods and technological advances to facilitate scientific discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the Framingham Heart Study.
Fig. 2: Major publications from the Framingham Heart Study.
Fig. 3: Temporal developments in molecular epidemiology in the Framingham Heart Study.

Similar content being viewed by others

References

  1. Oppenheimer, G. M. Becoming the Framingham Study 1947–1950. Am. J. Public Health 95, 602–610 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mahmood, S. S., Levy, D., Vasan, R. S. & Wang, T. J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383, 999–1008 (2014).

    Article  PubMed  Google Scholar 

  3. Dawber, T. R., Meadors, G. F. & Moore, F. E. Jr. Epidemiological approaches to heart disease: the Framingham Study. Am. J. Public Health Nations Health 41, 279–281 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feinleib, M., Kannel, W. B., Garrison, R. J., McNamara, P. M. & Castelli, W. P. The Framingham Offspring Study. Design and preliminary data. Prev. Med. 4, 518–525 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Splansky, G. L. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007).

    Article  PubMed  Google Scholar 

  6. Dawber, T. R., Moore, F. E. & Mann, G. V. Coronary heart disease in the Framingham Study. Am. J. Public Health Nations Health 47, 4–24 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J. 3rd. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    Article  CAS  PubMed  Google Scholar 

  8. Doyle, J. T., Dawber, T. R., Kannel, W. B., Heslin, A. S. & Kahn, H. A. Cigarette smoking and coronary heart disease. Combined experience of the Albany and Framingham studies. N. Engl. J. Med. 266, 796–801 (1962).

    Article  CAS  PubMed  Google Scholar 

  9. Doyle, J. T., Dawber, T. R., Kannel, W. B., Kinch, S. H. & Kahn, H. A. The relationship of cigarette smoking to coronary heart disease: the second report of the combined experience of the Albany, NY, and Framingham, mass, studies. JAMA 190, 886–890 (1964).

    CAS  PubMed  Google Scholar 

  10. Moser, M. Historical perspectives on the management of hypertension. J. Clin. Hypertens. (Greenwich) 8, 15–20 (2006).

    Article  Google Scholar 

  11. Kannel, W. B., Wolf, P. A., Verter, J. & McNamara, P. M. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham Study. JAMA 214, 301–310 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Kannel, W. B., Castelli, W. P., McNamara, P. M., McKee, P. A. & Feinleib, M. Role of blood pressure in the development of congestive heart failure. The Framingham Study. N. Engl. J. Med. 287, 781–787 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. McKee, P. A., Castelli, W. P., McNamara, P. M. & Kannel, W. B. The natural history of congestive heart failure: the Framingham Study. N. Engl. J. Med. 285, 1441–1446 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Wolf, P. A., Dawber, T. R., Thomas, H. E. Jr & Kannel, W. B. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham Study. Neurology 28, 973–977 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Kannel, W. B., Hjortland, M. & Castelli, W. P. Role of diabetes in congestive heart failure: the Framingham Study. Am. J. Cardiol. 34, 29–34 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Izzo, J. L. Jr., Levy, D. & Black, H. R. Clinical Advisory Statement. Importance of systolic blood pressure in older Americans. Hypertension 35, 1021–1024 (2000).

    Article  PubMed  Google Scholar 

  17. Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The Framingham Study. JAMA 241, 2035–2038 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271, 840–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Ho, K. K., Pinsky, J. L., Kannel, W. B. & Levy, D. The epidemiology of heart failure: the Framingham Study. J. Am. Coll. Cardiol. 22, 6A–13A (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Kannel, W. B. & Shurtleff, D. The Framingham Study. Cigarettes and the development of intermittent claudication. Geriatrics 28, 61–68 (1973).

    CAS  PubMed  Google Scholar 

  21. Wolf, P. A., D’Agostino, R. B., Kannel, W. B., Bonita, R. & Belanger, A. J. Cigarette smoking as a risk factor for stroke. The Framingham Study. JAMA 259, 1025–1029 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Castelli, W. P., Abbott, R. D. & McNamara, P. M. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 67, 730–734 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Kannel, W. B. Habitual level of physical activity and risk of coronary heart disease: the Framingham Study. Can. Med. Assoc. J. 96, 811–812 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hubert, H. B., Feinleib, M., McNamara, P. M. & Castelli, W. P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67, 968–977 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Sagie, A., Larson, M. G. & Levy, D. The natural history of borderline isolated systolic hypertension. N. Engl. J. Med. 329, 1912–1917 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Vasan, R. S. et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA 287, 1003–1010 (2002).

    Article  PubMed  Google Scholar 

  27. Lloyd-Jones, D. M. et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110, 1042–1046 (2004).

    Article  PubMed  Google Scholar 

  28. Lloyd-Jones, D. M. et al. Lifetime risk of coronary heart disease by cholesterol levels at selected ages. Arch. Intern. Med. 163, 1966–1972 (2003).

    Article  PubMed  Google Scholar 

  29. Staerk, L. et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 361, k1453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weng, L. C. et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation 137, 1027–1038 (2018).

    Article  PubMed  Google Scholar 

  31. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  33. Pencina, M. J. et al. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation 119, 3078–3084 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kannel, W. B. et al. Profile for estimating risk of heart failure. Arch. Intern. Med. 159, 1197–1204 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Schnabel, R. B. et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet 373, 739–745 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. D’Agostino, R. B., Wolf, P. A., Belanger, A. J. & Kannel, W. B. Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study. Stroke 25, 40–43 (1994).

    Article  PubMed  Google Scholar 

  37. D’Agostino, R. B. et al. Primary and subsequent coronary risk appraisal: new results from the Framingham Study. Am. Heart J. 139, 272–281 (2000).

    Article  PubMed  Google Scholar 

  38. Parikh, N. I. et al. A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study. Ann. Intern. Med. 148, 102–110 (2008).

    Article  PubMed  Google Scholar 

  39. Levy, D. et al. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann. Intern. Med. 108, 7–13 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Levy, D. et al. Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am. J. Cardiol. 59, 956–960 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Vasan, R. S., Larson, M. G., Levy, D., Evans, J. C. & Benjamin, E. J. Distribution and categorization of echocardiographic measurements in relation to reference limits: the Framingham Heart Study: formulation of a height- and sex-specific classification and its prospective validation. Circulation 96, 1863–1873 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Vasan, R. S., Larson, M. G., Benjamin, E. J. & Levy, D. Echocardiographic reference values for aortic root size: the Framingham Heart Study. J. Am. Soc. Echocardiogr. 8, 793–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Lieb, W. et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham Offspring Study. Circulation 119, 3085–3092 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Vasan, R. S., Larson, M. G., Benjamin, E. J., Evans, J. C. & Levy, D. Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N. Engl. J. Med. 336, 1350–1355 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T. J. et al. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108, 977–982 (2003).

    Article  PubMed  Google Scholar 

  47. Cheng, S. et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122, 570–578 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vasan, R. S. et al. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J. Am. Coll. Cardiol. 33, 1948–1955 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Vasan, R. S. et al. Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. JACC Cardiovasc. Imaging 11, 1–11 (2018).

    Article  PubMed  Google Scholar 

  50. Lauer, M. S., Larson, M. G., Evans, J. C. & Levy, D. Association of left ventricular dilatation and hypertrophy with chronotropic incompetence in the Framingham Heart Study. Am. Heart J. 137, 903–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Lauer, M. S., Okin, P. M., Larson, M. G., Evans, J. C. & Levy, D. Impaired heart rate response to graded exercise. Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 93, 1520–1526 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Morshedi-Meibodi, A., Larson, M. G., Levy, D., O’Donnell, C. J. & Vasan, R. S. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (the Framingham Heart Study). Am. J. Cardiol. 90, 848–852 (2002).

    Article  PubMed  Google Scholar 

  53. Ivan, C. S. et al. Dementia after stroke: the Framingham Study. Stroke 35, 1264–1268 (2004).

    Article  PubMed  Google Scholar 

  54. Seshadri, S. et al. Stroke risk profile, brain volume, and cognitive function: the Framingham Offspring Study. Neurology 63, 1591–1599 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Seshadri, S. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Elias, M. F., Elias, P. K., Sullivan, L. M., Wolf, P. A. & D’Agostino, R. B. Lower cognitive function in the presence of obesity and hypertension: the Framingham Heart Study. Int. J. Obes. Relat. Metab. Disord. 27, 260–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Debette, S. et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Myers, R. H. et al. Apolipoprotein E epsilon4 association with dementia in a population-based study: the Framingham Study. Neurology 46, 673–677 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Elias, M. F. et al. Atrial fibrillation is associated with lower cognitive performance in the Framingham offspring men. J. Stroke Cerebrovasc. Dis. 15, 214–222 (2006).

    Article  PubMed  Google Scholar 

  60. Nishtala, A. et al. Atrial fibrillation and cognitive decline in the Framingham Heart Study. Heart Rhythm 15, 166–172 (2018).

    Article  PubMed  Google Scholar 

  61. Lieb, W. et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302, 2565–2572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Satizabal, C. L. et al. Incidence of dementia over three decades in the Framingham Heart Study. N. Engl. J. Med. 374, 523–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, T. J. et al. Multiple biomarkers and the risk of incident hypertension. Hypertension 49, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Freitag, M. H. et al. Plasma brain natriuretic peptide levels and blood pressure tracking in the Framingham Heart Study. Hypertension 41, 978–983 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Kathiresan, S. et al. Cross-sectional relations of multiple biomarkers from distinct biological pathways to brachial artery endothelial function. Circulation 113, 938–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Adlin, E. V., Braitman, L. E. & Vasan, R. S. Bimodal aldosterone distribution in low-renin hypertension. Am. J. Hypertens. 26, 1076–1085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shoamanesh, A. et al. Circulating biomarkers and incident ischemic stroke in the Framingham Offspring Study. Neurology 87, 1206–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andersson, C. et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: the Framingham Heart Study. Atherosclerosis 248, 245–251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schnabel, R. B. et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation 121, 200–207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schnabel, R. B. et al. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am. J. Cardiol. 104, 92–96 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Boer, R. A. et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 3, 215–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xanthakis, V. et al. Prevalence, neurohormonal correlates, and prognosis of heart failure stages in the community. JACC Heart Fail 4, 808–815 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Velagaleti, R. S. et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation 122, 1700–1706 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Xanthakis, V. et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: implications for screening. J. Am. Heart Assoc. 2, e000399 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fox, C. S. et al. A multi-marker approach to predict incident CKD and microalbuminuria. J. Am. Soc. Nephrol. 21, 2143–2149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. O’Seaghdha, C. M. et al. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J. Am. Soc. Nephrol. 24, 1880–1888 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Puurunen, M. K. et al. Biomarkers for the prediction of venous thromboembolism in the community. Thromb. Res. 145, 34–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Pikula, A. et al. Multiple biomarkers and risk of clinical and subclinical vascular brain injury: the Framingham Offspring Study. Circulation 125, 2100–2107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersson, C. et al. Associations of circulating growth differentiation factor-15 and ST2 concentrations with subclinical vascular brain injury and incident stroke. Stroke 46, 2568–2575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shoamanesh, A. et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study. Neurology 84, 825–832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puurunen, M. K. et al. ADP platelet hyperreactivity predicts cardiovascular disease in the FHS (Framingham Heart Study). J. Am. Heart Assoc. 7, e008522 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chouraki, V. et al. Plasma amyloid-beta and risk of Alzheimer’s disease in the Framingham Heart Study. Alzheimers Dement. 11, 249–257 (2015).

    Article  PubMed  Google Scholar 

  83. Tan, Z. S. et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 68, 1902–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, T. J. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355, 2631–2639 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Fradley, M. G. et al. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am. J. Cardiol. 108, 1341–1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng, S. et al. Relation of visceral adiposity to circulating natriuretic peptides in ambulatory individuals. Am. J. Cardiol. 108, 979–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Sinner, M. F. et al. B-Type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies. Europace 16, 1426–1433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang, T. J. et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 350, 655–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Vasan, R. S. et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham Heart Study. JAMA 288, 1252–1259 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Tsuji, H. et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 90, 878–883 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Ho, K. K. et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96, 842–848 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Tsuji, H. et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 94, 2850–2855 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98, 946–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation 107, 2920–2925 (2003).

    Article  PubMed  Google Scholar 

  96. Santhanakrishnan, R. et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation 133, 484–492 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mitchell, G. F. et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121, 505–511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Andersson, C. et al. Association of parental hypertension with arterial stiffness in nonhypertensive offspring: the Framingham Heart Study. Hypertension 68, 584–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Kaess, B. M. et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308, 875–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Niiranen, T. J. et al. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the Framingham Heart Study. J. Am. Heart Assoc. 5, e004271 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maillard, P. et al. Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury. Stroke 48, 1567–1573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maillard, P. et al. Effects of arterial stiffness on brain integrity in young adults from the Framingham Heart Study. Stroke 47, 1030–1036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pase, M. P. et al. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham Third Generation Cohort Study. Hypertension 67, 513–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Pase, M. P. et al. Aortic stiffness and the risk of incident mild cognitive impairment and dementia. Stroke 47, 2256–2261 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shaikh, A. Y. et al. Relations of arterial stiffness and brachial flow-mediated dilation with new-onset atrial fibrillation: the Framingham Heart Study. Hypertension 68, 590–596 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Kaess, B. M. et al. Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the Framingham Heart Study. J. Am. Heart Assoc. 5, e002693 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tsao, C. W. et al. Relation of central arterial stiffness to incident heart failure in the community. J. Am. Heart Assoc. 4, e002189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zachariah, J. P. et al. Circulating adipokines and vascular function: cross-sectional associations in a community-based cohort. Hypertension 67, 294–300 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Chami, H. A. et al. The association between sleep-disordered breathing and aortic stiffness in a community cohort. Sleep Med. 19, 69–74 (2016).

    Article  PubMed  Google Scholar 

  110. Zachariah, J. P. et al. Metabolic predictors of change in vascular function: prospective associations from a community-based cohort. Hypertension 71, 237–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Andersson, C. et al. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults. J. Am. Heart Assoc. 4, e001528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Benjamin, E. J. et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation 109, 613–619 (2004).

    Article  PubMed  Google Scholar 

  113. Widlansky, M. E. et al. Relation of season and temperature to endothelium-dependent flow-mediated vasodilation in subjects without clinical evidence of cardiovascular disease (from the Framingham Heart Study). Am. J. Cardiol. 100, 518–523 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mitchell, G. F. et al. Local shear stress and brachial artery flow-mediated dilation: the Framingham Heart Study. Hypertension 44, 134–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, J. J. et al. Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and adipokines: the Framingham Heart Study. J. Am. Heart Assoc. 5, e002545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Murabito, J. M. et al. Moderate-to-vigorous physical activity with accelerometry is associated with visceral adipose tissue in adults. J. Am. Heart Assoc. 4, e001379 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee, J. J., Pedley, A., Hoffmann, U., Massaro, J. M. & Fox, C. S. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J. Am. Coll. Cardiol. 68, 1509–1521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rosenquist, K. J. et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J. Clin. Endocrinol. Metab. 100, 227–234 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Rosenquist, K. J. et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kaess, B. M. et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 55, 2622–2630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mahabadi, A. A. et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur. Heart J. 30, 850–856 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hoffmann, U., Massaro, J. M., Fox, C. S., Manders, E. & O’Donnell, C. J. Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study). Am. J. Cardiol. 102, 1136–1141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tsao, C. W. et al. Relations of long-term and contemporary lipid levels and lipid genetic risk scores with coronary artery calcium in the framingham heart study. J. Am. Coll. Cardiol. 60, 2364–2371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hwang, S. J. et al. Maintenance of ideal cardiovascular health and coronary artery calcium progression in low-risk men and women in the Framingham Heart Study. Circ. Cardiovasc. Imaging 11, e006209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Moselewski, F. et al. Calcium concentration of individual coronary calcified plaques as measured by multidetector row computed tomography. Circulation 111, 3236–3241 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Preis, S. R. et al. Eligibility of individuals with subclinical coronary artery calcium and intermediate coronary heart disease risk for reclassification (from the Framingham Heart Study). Am. J. Cardiol. 103, 1710–1715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ferencik, M. et al. Coronary artery calcium distribution is an independent predictor of incident major coronary heart disease events: results from the Framingham Heart Study. Circ. Cardiovasc. Imaging 10, e006592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hoffmann, U. et al. Cardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham Heart Study. J. Am. Heart Assoc. 5, e003144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chuang, M. L. et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J. Magn. Reson. Imaging 39, 895–900 (2014).

    Article  PubMed  Google Scholar 

  130. Yeon, S. B. et al. Impact of age, sex, and indexation method on MR left ventricular reference values in the Framingham Heart Study offspring cohort. J. Magn. Reson. Imaging 41, 1038–1045 (2015).

    Article  PubMed  Google Scholar 

  131. Foppa, M. et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham Heart Study. Circ. Cardiovasc. Imaging 9, e003810 (2016).

    Article  PubMed  Google Scholar 

  132. Tsao, C. W. et al. Subclinical and clinical correlates of left ventricular wall motion abnormalities in the community. Am. J. Cardiol. 107, 949–955 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tsao, C. W. et al. Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study Cardiac Magnetic Resonance Study. J. Am. Heart Assoc. 4, e002188 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Jeerakathil, T. et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 35, 1857–1861 (2004).

    Article  PubMed  Google Scholar 

  135. Debette, S. et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke 41, 600–606 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Williams, L. R. et al. Clinical correlates of cerebral white matter hyperintensities in cognitively normal older adults. Arch. Gerontol. Geriatr. 50, 127–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. DeCarli, C. et al. Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol. Aging 26, 491–510 (2005).

    Article  PubMed  Google Scholar 

  138. Au, R. et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Arch. Neurol. 63, 246–250 (2006).

    Article  PubMed  Google Scholar 

  139. Tan, Z. S. et al. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study. Diabetes Care 34, 1766–1770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Pachucki, M. A., Jacques, P. F. & Christakis, N. A. Social network concordance in food choice among spouses, friends, and siblings. Am. J. Public Health 101, 2170–2177 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Fowler, J. H., Settle, J. E. & Christakis, N. A. Correlated genotypes in friendship networks. Proc. Natl Acad. Sci. USA 108, 1993–1997 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cupples, L. A. et al. The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Med. Genet. 8 (Suppl. 1), 1 (2007).

    Article  CAS  Google Scholar 

  145. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Eicher, J. D. et al. Whole exome sequencing in the Framingham Heart Study identifies rare variation in HYAL2 that influences platelet aggregation. Thromb. Haemost. 117, 1083–1092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Peloso, G. M. et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am. J. Hum. Genet. 94, 223–232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gordon, A. S. et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum. Mol. Genet. 23, 1957–1963 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Lubitz, S. A. et al. Whole exome sequencing in atrial fibrillation. PLOS Genet. 12, e1006284 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. The International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  PubMed Central  CAS  Google Scholar 

  153. Dehghan, A. et al. Genome-wide association study for incident myocardial infarction and coronary heart disease in prospective cohort studies: the CHARGE Consortium. PLOS ONE 11, e0144997 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Natarajan, P. et al. Multiethnic exome-wide association study of subclinical atherosclerosis. Circ. Cardiovasc. Genet. 9, 511–520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Broer, L. et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J. Gerontol. A Biol. Sci. Med. Sci. 70, 110–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Thanassoulis, G. et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303, 1832–1840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–1233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Johnson, A. D. et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat. Genet. 42, 608–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Richard, M. A. et al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet. 101, 888–902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Huan, T. et al. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum. Mol. Genet. 25, 4611–4623 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Mendelson, M. M. et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a mendelian randomization approach. PLOS Med. 14, e1002215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lin, H. et al. Methylome-wide association study of atrial fibrillation in Framingham Heart Study. Sci. Rep. 7, 40377 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ligthart, S. et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17, 255 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huan, T. et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun. 6, 6601 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Huan, T. et al. Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses. Arterioscler. Thromb. Vasc. Biol. 35, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 18, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Merino, J. et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia 61, 1315–1324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yin, X. et al. Metabolite signatures of metabolic risk factors and their longitudinal changes. J. Clin. Endocrinol. Metab. 101, 1779–1789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rhee, E. P. et al. An exome array study of the plasma metabolome. Nat. Commun. 7, 12360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Benson, M. D. et al. Genetic architecture of the cardiovascular risk proteome. Circulation 137, 1158–1172 (2018).

    Article  PubMed  Google Scholar 

  175. Ho, J. E. et al. Metabolomic profiles of body mass index in the Framingham Heart Study reveal distinct cardiometabolic phenotypes. PLOS ONE 11, e0148361 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Cheng, S. et al. Distinct metabolomic signatures are associated with longevity in humans. Nat. Commun. 6, 6791 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Ho, J. E. et al. Effect of phosphodiesterase inhibition on insulin resistance in obese individuals. J. Am. Heart Assoc. 3, e001001 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Rhee, E. P. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 18, 130–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat. Commun. 9, 3268 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Bookman, E. B. et al. Reporting genetic results in research studies: summary and recommendations of an NHLBI working group. Am. J. Med. Genet. A 140A, 1033–1040 (2006).

    Article  Google Scholar 

  181. Johnson, A. D. et al. CLIA-tested genetic variants on commercial SNP arrays: potential for incidental findings in genome-wide association studies. Genet. Med. 12, 355–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Levy, D. et al. Consent for genetic research in the Framingham Heart Study. Am. J. Med. Genet. A 152A, 1250–1256 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Natarajan, P. et al. Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Sci. Transl Med. 8, 364ra151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Patel, M. S. et al. Effect of a game-based intervention designed to enhance social incentives to increase physical activity among families: the BE FIT randomized clinical trial. JAMA Intern. Med. 177, 1586–1593 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Fox, C. S. et al. Digital connectedness in the Framingham Heart Study. J. Am. Heart Assoc. 5, e003193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ford, E. S. et al. Explaining the decrease in U. S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 356, 2388–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Andersson, C. & Vasan, R. S. Epidemiology of cardiovascular disease in young individuals. Nat. Rev. Cardiol. 15, 230–240 (2018).

    Article  PubMed  Google Scholar 

  188. Myers, R. H., Kiely, D. K., Cupples, L. A. & Kannel, W. B. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am. Heart J. 120, 963–969 (1990).

    Article  CAS  PubMed  Google Scholar 

  189. Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B. & Ho, K. K. The progression from hypertension to congestive heart failure. JAMA 275, 1557–1562 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Vasan, R. S., Larson, M. G., Leip, E. P., Kannel, W. B. & Levy, D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet 358, 1682–1686 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Vasan, R. S. et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 345, 1291–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Article  PubMed  Google Scholar 

  193. Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Fox, C. S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291, 2851–2855 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Lee, D. S. et al. Association of parental heart failure with risk of heart failure in offspring. N. Engl. J. Med. 355, 138–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Lubitz, S. A. et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 304, 2263–2269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tsao, C. W. et al. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 6, 678–685 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the US National Heart, Lung, and Blood Institute (NHLBI), the NIH or the US Department of Health and Human Services. The Framingham Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195 and HHSN268201500001I from the NHLBI and grant supplement R01 HL092577-06S1 for this research. The authors also acknowledge the dedication of the FHS study participants, without whom this research would not be possible. E.J.B. is supported by NIH grants R01 HL128914, 2R01 HL092577, 2U54 HL120163 and 1R01 HL141434 01A1 and AHA grant 18SFRN34110082. R.S.V. is supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine, USA.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article. C.A. and R.S.V. discussed its content. C.A. wrote the initial version of the manuscript, and the other authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Charlotte Andersson or Ramachandran S. Vasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Cardiology thanks B. Psaty, C. Torp-Pedersen, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Related links

Biologic Specimen and Data Repository Information Coordinating Center: https://biolincc.nhlbi.nih.gov/studies/framcohort/

Cross-Cohort Collaboration Consortium: https://chs-nhlbi.org/node/6539

Database of Genotypes and Phenotypes: https://www.ncbi.nlm.nih.gov/gap

Grand Opportunity Exome Sequencing Project: https://esp.gs.washington.edu/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, C., Johnson, A.D., Benjamin, E.J. et al. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 16, 687–698 (2019). https://doi.org/10.1038/s41569-019-0202-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0202-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing