Horm Metab Res 2004; 36(11/12): 742-746
DOI: 10.1055/s-2004-826157
Review
© Georg Thieme Verlag KG Stuttgart · New York

Overview of Incretin Hormones

S.  Efendic1 , N.  Portwood1
  • 1Department of Molecular Medicine, The Endocrine and Diabetes Unit, Karolinska Institutet, Stockholm, Sweden
Further Information

Publication History

Received 5 August 2004

Accepted without revision 9 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Incretins are hormones released by nutrients from the GI tract. They amplify glucose-induced insulin release. By raising circulating incretin levels, oral glucose provokes a higher insulin response than that resulting from intravenous glucose. The two most important incretin hormones are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). In patients with type 2 diabetes, the incretin effect is decreased, mainly due to loss of the GIP-regulated second phase of insulin secretion, and because of a decreased secretion of GLP-1. In addition to its insulinotropic effect, GLP-1 inhibits glucagon release, prolongs gastric emptying, and leads to decreases in body-weight, all of which explain the marked antidiabetogenic effect of this incretin hormone.

References

  • 1 Moore B, Edie E S, Hill Abram J. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane.  Biochem J. 1906;  1 28-38
  • 2 La Barre J, Still E U. Studies on the physiology of secretin. III. Further studies on the effects of secretin on the blood sugar.  Am J Physiol. 1930;  91 649-653
  • 3 Heller H. Über das insulinotrope Hormon der Darmschleimhaut (Duodenin).  Naunyn Schmiedebergs Arch Pharmacol. 1935;  177 127-133
  • 4 Yalov R S, Berson S A. Immunoassay of endogenous plasma insulin in man.  J Clin Invest. 1960;  39 1157
  • 5 Elrick H, Stimmler L, Hlad C J, Jr., Arai Y. Plasma insulin response to oral and intravenous glucose administration.  J Clin Endocrinol. 1964;  24 1076-1082
  • 6 McIntyre N, Holdsworth C D, Turner D S. New interpretation of oral glucose tolerance.  Lancet. 1964;  2 20-21
  • 7 Perley M J, Kipnis D M. Plasma insulin responses to oral and intravenous glucose: Studies in normal and diabetic subjects.  J Clin Invest. 1967;  46 1954-1962
  • 8 Creutzfeldt W. The incretin concept today.  Diabetologia. 1979;  16 75-85
  • 9 Fahrenkrug J, Schaffalitzky de Muckadell O, Kühl C. Effect of secretin on basal- and glucose-stimulated insulin secretion in man.  Diabetologia. 1978;  14 229-234
  • 10 Rehfeld J F, Stadil F. The effect of gastrin on basal- and glucose-stimulated insulin secretion in man.  J Clin Invest. 1973;  52 1415-1426
  • 11 Drucker J. Enhancing incretin action for the treatment of type 2 diabetes.  Diabetes Care. 2003;  26 2929-2940
  • 12 Rehfeld J F, Stadil F. The glucose-induced gastrointestinal stimulation of insulin secretion in man: relation to age and to gastrin release.  Eur J Clin Invest. 1975;  5 273-283
  • 13 Rehfeld J F, Holst J J, Kühl C. The effect of gastrin on basal and aminoacid-stimulated insulin and glucagon secretion in man.  Eur J Clin Invest. 1978;  8 5-9
  • 14 Ahrén B, Hedner P, Lundquist I. Interaction of gastric inhibitory polypeptide (GIP) and cholecystokinin (CCK-8) with basal and stimulated insulin secretion in mice.  Acta Endocrinol (Copenh). 1983;  102 96-102
  • 15 Szecowka H, Lins P E, Efendic S. Effects of cholecystokinin, gastric inhibitory polypeptide and secretin on insulin and glucagon secretion in rats.  Endocrinology. 1982;  110 1268-1272
  • 16 Zawalich W S, Diaz V A, Zawalich K C. Stimulatory effects of cholecystokinin on isolated perifused islets inhibited by potent and specific antagonist L 364 718.  Diabetes. 1988;  37 1432-1437
  • 17 Rushakoff R J, Goldfine I D, Carter J D, Liddle R A. Physiological concentrations of cholecystokinin stimulate amino-acid induced insulin release in humans.  J Clin Endocrinol Metab. 1987;  65 395-401
  • 18 Liddle R A, Gertz B J, Kanayama S. et al . Regulation of pancreatic endocrine function by cholecystokinin: studies with MK-329, a nonpeptide cholecystokinin receptor antagonist.  J Clin Endocrinol Metab. 1990;  70 1312-1318
  • 19 Reimers J, Nauck M, Creutzfeldt W. et al . Lack of insulinotropic effect of endogenous and exogenous cholecystokinin in man.  Diabetologia. 1988;  31 271-280
  • 20 Fieseler P, Bridenbaugh S, Nustede R. et al . Physiological augmentation of amino acid-induced insulin secretion by GIP and GLP-1 but not by CCK-8.  Am J Physiol. 1995;  268 E949-E955
  • 21 Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H, Mitani T, Kurono M, Suzuki T, Tobe T. et al . Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor.  Proc Natl Acad Sci USA. 1987;  84 7005-7008
  • 22 Lund P K, Goodman R H, Dee P C, Habener J F. Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem.  Proc Natl Acad Sci USA. 1982;  79 345-349
  • 23 Bell G I, Sanchez-Pescador R, Laybourn P J, Najarian R C. Exon duplication and divergence in the human preproglucagon gene.  Nature. 1983;  304 368-371
  • 24 Orskov C, Knuhtsen S, Baldissera , FG , Poulsen S S, Nielsen O V, Holst J J. Glucagon-like peptides GLP-I and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas.  Endocrinology. 1986;  119 1467-1475
  • 25 Orskov C, Holst J J, Seier-Poulsen S, Kirkegaard P. Pancreatic and intestinal processing of proglucagon in man.  Diabetologia. 1987;  30 874-881
  • 26 Orskov C, Bersani M. Johnsen AH, Hojrup P, Holst JJ. Complete sequences of glucagon-like peptide from human and pig small intestine.  J Biol Chem. 1989;  264 12 826- 12 829
  • 27 Gutniak M, Orskov C, Holst J J, Ahrén B, Efendic S. Antidiabetogenic effect of glucagon-like peptide 1 (7 - 36)amide in normal subjects and patients with diabetes mellitus.  New Engl J of Med. 1992;  326 1316-1322
  • 28 Orskov C, Wettergren A, Holst J J. Biological effects and metabolic rates of glucagon-like peptide 1 (7 - 36)amide and glucagon-like peptide 1(7 - 37) in healthy subjects are indistinguishable.  Diabetes. 1993;  42 658-661
  • 29 Nauck M A, Kleine N, Orskov C, Holst J J, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7 - 36 amide) in type 2 (non-insulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 30 Elliot R M, Morgan L M, Tredger J A, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7 - 36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns.  J Endocrinol. 1993;  138 159-166
  • 31 Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst J J. Tissue and plasma concentrations of amidated and glycine- extended glucagon-like peptide 1 in humans.  Diabetes. 1994;  43 535-539
  • 32 Herrmann C, Goke R, Richter G, Fehmann H C, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients.  Digestion. 1995;  56 117-126
  • 33 Crockett S E, Mazzaferri E L, Cataland S. Gastric inhibitory peptide (GIP) in maturity-onset diabetes mellitus.  Diabetes. 1976;  25 931-935
  • 34 Ross S A, Brown J C, Dupré J. Hypersecretion of gastric inhibitory polypetide following oral glucose in diabetes mellitus.  Diabetes. 1977;  26 525-529
  • 35 Ebert R, Creutzfeldt W. Hypo- and hypersecretion of GIP in maturity-onset diabetics.  Diabetologia. 1980;  19 271-272
  • 36 Creutzfeldt W, Ebert R, Nauck M, Stockmann F. Disturbances of the entero-insular axis.  Scand J Gastroenterol. 1983;  Suppl 82 111-119
  • 37 Jones I R, Owens D R, Luzio S, Williams S, Hayes T M. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus.  Diabetologia. 1989;  32 668-677
  • 38 Nauck M A, Heimesaat M M, Orskov C, Holst J J, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 (7 - 36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes mellitus.  J Clin Invest. 1993;  91 301-307
  • 39 Vilsboll T, Krarup T, Deacon C F, Madsbad S, Holst J J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients.  Diabetes. 2001;  50 609-613
  • 40 Toft-Nielsen M B, Damholt M B, Madsbad S, Hilsted L M, Hughes T E, Michelsen B K, Holst J J. Determinants of the impaired secretion of glucagon-like peptide -1 in type 2 diabetic patients.  J Clin Endocrinol Metab. 2001;  86 3717- 3723
  • 41 Nyholm B, Walker M, Gravholt C H, Shearing P A, Sturis J, Alberti K GMM, Holst J J, Schmitz O. Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substances and gut incretin hormones in healthy offspring of type II (non-insulin-dependent) diabetic parents: evidence of several aberrations.  Diabetologia. 1999;  42 1314-1323
  • 42 Deacon C F, Nauck M A, Meier J, Hucking K, Holst J J. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide.  J Clin Endocrinol Metab. 2000;  85 3575-3581
  • 43 Deacon C F, Nauck M A, Toft-Nielsen M, Pridal L, Willms B, Holst J J. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2 diabetic patients and in healthy subjects.  Diabetes. 1995;  44 1126-1131
  • 44 Mentlein R, Gallwitz B, Schmidt W E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7 - 36) amide, peptide histidine methionine and is responsible for their degradation in human serum.  Eur J Biochem. 1993;  214 829-835
  • 45 Kieffer T J, McIntosh C H, Pederson R A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.  Endocrinology. 1995;  136 3585-3596
  • 46 Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes.  Diabetologia. 1986;  29 46-54
  • 47 Shuster L T, Go V LW, Rizza R A, O'Brien P C, Service F J. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans.  Diabetes. 1988;  37 200-203
  • 48 Gibby O M, Hales C N. Oral glucose decreases hepatic extraction of insulin.  Br Med J. 1983;  286 921-923
  • 49 Shapiro E T, Tillil H, Miller M A, Frank B H, Galloway J A. Rubenstein AH, Polonsky KS. Insulin secretion and clearance. Comparison after oral and intravenous glucose.  Diabetes. 1987;  36 1365-1371
  • 50 Tillil H, Shapiro E T, Miller A, Karrison T, Frank B H, Galloway J A, Rubenstein A H, Polonsky K S. Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans.  Am J Physiol (Endocrinol Metab). 1988;  254 E349-357
  • 51 Krarup T, Saurbrey N, Moody A J, Kühl C, Madsbad S. Effect of porcine gastric inhibitory polypeptide on B-cell function in type I and type II diabetes mellitus.  Metabolism. 1987;  36 677-682
  • 52 Vilsboll T, Krarup T, Madsbad S, Holst J J. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients.  Diabetologia. 2002;  45 1111-1119
  • 53 Meier J J, Hücking K, Holst J J, Deacon C F, Schmiegel W H, Nauck M A. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes.  Diabetes. 2001;  50 2497-2504
  • 54 Holst J J, Gromada J, Nauck M A. The pathogenesis of NIDDM involves a defective expression of the GIP receptor.  Diabetologia. 1997;  40 984-986
  • 55 Lynn F C, Pamir N, Ng E H, McIntosh C H, Kieffer T J, Pederson R A. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats.  Diabetes. 2001;  50 1004-1011
  • 56 Tseng C C, Boylan M O, Jarboe L A, Usdin T B, Wolfe M M. Chronic desensitization of the glucose-dependent insulinotropic polypeptide receptor in diabetic rats.  Am J Physiol. 1996;  270 E661-E666
  • 57 Ahrén B. Autonomic regulation of islet hormone secretion - implication for health and disease.  Diabetologia. 2000;  43 393-410
  • 58 Sutherland E W, Rall T W. The relation of adenosine-3′, 5′-monophosphate and phosphorylase to the actions of catecholamines and other hormones.  Pharmacol Rev. 1960;  12 265-299
  • 59 Miller L L. Glucagon: A protein catabolic hormone in the isolated perfused rat liver.  Nature. 1960;  185 248-254
  • 60 Luft R, Efendic S, Hökfelt T. Somatostatin - both hormone and neurotransmitter?.  Diabetologia. 1978;  14 1-13
  • 61 Johansson C, Wisén O, Efendic S, Uvnäs-Wallensten K. Effects of somatostatin on gastrointestinal propagation and absorption of oral glucose in man.  Digestion. 1981;  22 126- 137
  • 62 Dupré J, McDonald T J, Radziuk J, Caussignac Y, Van Vliet S. Glucagonotropic action of gastric inhibitory tolerance.  Clin Res. 1976;  24 680A
  • 63 Pederson R A, Brown J C. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas.  Endocrinology. 1978;  103 610-615
  • 64 Szecowka J, Sandberg E, Efendic S. The interaction of vasoactive intestinal polypeptide (VIP), glucose and arginine on the secretion of insulin, glucagon and somatostatin in the perfused rat pancreas.  Diabetologia. 1980;  19 137-142
  • 65 Guenifi A, Ahrén B, Abdel-Halim S M. Differentail effects of glucagon-like peptide-1 (7 - 36)amide versus cholecystokinin on arginine-induced islet hormone release in vivo and in vitro.  Pancreas. 2001;  22 58-64

Prof. S. Efendic

Institutionen för Molekylär Medicin, Enheten för Endokrinologi D2 : 04, 4tr

Karolinska Universitetssjukhuset · Solna · SE-17176 Stockholm · Sweden

Phone: +46-8-517-74365/73665

Fax: +46-8-517-73096 ·

Email: Suad.Efendic@molmed.ki.se

    >