Skip to main content
Log in

B-Cell-Targeted Therapy for Systemic Lupus Erythematosus

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a complex disease characterised by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset of clinical manifestations have not yet been fully defined, but a central role for B cells in the pathogenesis of this disease has more recently gained prominence as a result of research in both mice and humans. Both antibody-dependent and -independent mechanisms of B cells are important in SLE. Autoantibodies contribute to autoimmunity by multiple mechanisms, including immune complex-mediated type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines such as interferon-α, tumour necrosis factor and interleukin-1. Suggested autoantibody-independent B-cell functions include antigen presentation, T-cell activation and polarisation, and dendritic-cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines, chemokines and lymphangiogenic growth factors, and by their critical contribution to lymphoid tissue development and organisation, including the development of ectopic tertiary lymphoid tissue. Given the large body of evidence implicating abnormalities in the B-cell compartment in SLE, a recent therapeutic focus has been to develop interventions that target the B-cell compartment by multiple mechanisms.

Rituximab, a mouse-human chimeric monoclonal antibody against CD20 that specifically depletes B cells, has been studied the most extensively. Although promising open-label data await confirmation in ongoing multicentre placebo-controlled trials, a number of preliminary conclusions can be drawn. The adequacy of peripheral B-cell depletion depends on achieving high and sustained serum rituximab concentrations, pharmacokinetics that can be varied with treatment dose and factors that may affect drug clearance, such as human anti-chimeric antibodies. In SLE patients with effective B-cell depletion, the clinical response can be significant, with favourable responses observed in a diverse array of disease manifestations. Moreover, rituximab appears to have the potential to induce clinical remission in severe, refractory disease. B-cell depletion has the potential to induce disease amelioration by inhibiting autoantibody production and/or by interfering with other B-cell pathogenic functions. The fact that clinical improvement correlates with B-cell depletion and precedes by several months any decline in serum levels of relevant autoantibodies suggests a predominant effect of autoantibody-independent functions of B cells, although the subset of patients with disease remission ultimately also experience autoantibody normalisation. Significant questions remain about rituximab therapy in SLE, including the immunological determinants of treatment response and remission, the role of combination therapy, and the safety of repeated courses of rituximab. In addition, the efficacy and role of other B-cell-depleting approaches, such as humanised anti-CD20 antibodies and anti-CD22, remain to be defined.

Another B-cell-targeted therapeutic approach is to block costimulatory interactions between T and B cells. Blockade of the CD40-CD40 ligand pathway has met with variable clinical benefit and unfortunate thromboembolic complications, although inhibition of the B7 pathway with cytotoxic T-lymphocyte antigen-4Ig is currently under early investigation in SLE clinical trials. Preliminary data on the treatment of SLE with belimumab, a fully human monoclonal antibody that specifically binds to and neutralises the B-lymphocyte stimulator (BLyS or B-cell-activating factor [BAFF]), are now available. In a phase II double-blind, placebo-controlled trial of the safety and efficacy of three different doses administered in addition to standard therapy, belimumab was well tolerated but reportedly did not meet primary efficacy endpoints. Blockade of BAFF is still viewed as a promising therapeutic approach and additional agents that interfere with the BAFF pathway are under study.

Overall, therapies targeting B cells appear to be promising in the treatment of SLE, provide additional evidence for the importance of B cells to disease pathogenesis, and will continue to elucidate the diverse roles of B cells in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4

Similar content being viewed by others

References

  1. Petri M. Epidemiology of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2002; 16: 847–58

    Article  PubMed  Google Scholar 

  2. Bongu A, Chang E, Ramsey-Goldman R. Can morbidity and mortality of SLE be improved? Best Pract Res Clin Rheumatol 2002; 16: 313–32

    Article  PubMed  Google Scholar 

  3. Chan OT, Madaio MP, Shlomchik MJ. The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 1999; 169: 107–21

    Article  PubMed  CAS  Google Scholar 

  4. Mamula MJ, Fatenejad S, Craft J. B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 1994; 152: 1453–61

    PubMed  CAS  Google Scholar 

  5. Linton PJ, Harbertson J, Bradley LM. A critical role for B cells in the development of memory CD4 cells. J Immunol 2000; 165: 5558–65

    PubMed  CAS  Google Scholar 

  6. Chan OT, Hannum LG, Haberman AM, et al. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999; 189: 1639–48

    Article  PubMed  CAS  Google Scholar 

  7. Shlomchik MJ, Madaio MP, Ni D, et al. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994; 180: 1295–306

    Article  PubMed  CAS  Google Scholar 

  8. O’Keefe TL, Williams GT, Batista FD, et al. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 1999; 189: 1307–3

    Article  PubMed  Google Scholar 

  9. Gross J, Johnston J, Mudri S. TACI and BCMA are receptors for a TNF homologue implicated in B cell autoimmune disease. Nature 2000; 404: 995–9

    Article  PubMed  CAS  Google Scholar 

  10. Cohen PL, Caricchio R, Abraham V, et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 2002; 196: 135–40

    Article  PubMed  CAS  Google Scholar 

  11. Grammer A, Lipsky PE. B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther 2003; 5 Suppl. 4: S22–7

    Article  PubMed  Google Scholar 

  12. Odendahl M, Jacobi A, Hansen A, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000; 165: 5970–9

    PubMed  CAS  Google Scholar 

  13. Anolik J, Barnard J, Cappione A, et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 2004; 50: 3580–90

    Article  PubMed  CAS  Google Scholar 

  14. Zhang J, Roschke V, Baker KP, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001; 166: 6–10

    PubMed  CAS  Google Scholar 

  15. Ronnblom L, Eloranta ML, Alm GV. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 2006; 54: 408–20

    Article  PubMed  Google Scholar 

  16. Arbuckle M, McClain M, Rubertone M, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349: 1526–33

    Article  PubMed  CAS  Google Scholar 

  17. Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Ann Rev Immunol 2006; 24: 467–96

    Article  CAS  Google Scholar 

  18. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and toll-like receptors. Nature 2002; 416: 603–7

    Article  PubMed  CAS  Google Scholar 

  19. Viglianti GA, Lau CM, Hanley TM, et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 2003; 19: 837–47

    Article  PubMed  CAS  Google Scholar 

  20. Boule MW, Broughton C, Mackay F, et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 2004; 199: 1631–40

    Article  PubMed  CAS  Google Scholar 

  21. Bave U, Alm GV, Ronnblom L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol 2000; 165: 3519–26

    PubMed  CAS  Google Scholar 

  22. Bave U, Magnusson M, Eloranta M, et al. Fc gamma RIIa is expressed on natural IFN-alpha producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 2003; 171: 3296–302

    PubMed  CAS  Google Scholar 

  23. Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR 9. J Clin Invest 2005; 115: 407–17

    PubMed  CAS  Google Scholar 

  24. Ronnblom L, Alm GV. A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus [comment]. J Exp Med 2001; 194 Suppl. 12: F59–63

    Article  PubMed  CAS  Google Scholar 

  25. Manz R, Arce S, Cassese G, et al. Humoral immunity and long-lived plasma cells. Curr Opin Immunol 2002; 14: 517–21

    Article  PubMed  CAS  Google Scholar 

  26. Hoyer B, Moser K, Hauser A, et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 2004; 199: 1577

    Article  PubMed  CAS  Google Scholar 

  27. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994; 15: 450–4

    Article  PubMed  CAS  Google Scholar 

  28. Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD 20. Blood 1994; 83: 435–45

    PubMed  CAS  Google Scholar 

  29. Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance. Semin Oncol 2002; 29: 2–9

    Article  PubMed  CAS  Google Scholar 

  30. Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 2005; 174: 817–26

    PubMed  CAS  Google Scholar 

  31. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa. Blood 2002; 99: 754–8

    Article  PubMed  CAS  Google Scholar 

  32. Anolik JH, Campbell D, Felgar R, et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of SLE. Arthritis Rheum 2003; 48: 455–9

    Article  PubMed  CAS  Google Scholar 

  33. Kneitz C, Wilhelm M, Tony HP. Effective B cell depletion with rituximab in the treatment of autoimmune diseases. Immunobiology 2002; 206: 519–27

    Article  PubMed  CAS  Google Scholar 

  34. Leandro MJ, Cooper N, Cambridge G, et al. Bone marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology (Oxford) 2006 May 30, (Epub ahead of print)

  35. Kimby E. Tolerability and safety of rituximab (MabThera®). Cancer Treat Rev 2005; 31: 456–73

    Article  PubMed  CAS  Google Scholar 

  36. Looney RJ. B cell-targeted therapy in diseases other than rheumatoid arthritis. J Rheumatol Suppl 2005; 73: 25–8; discussion 29-30

    CAS  Google Scholar 

  37. Looney J. B cell-targeted therapy for rheumatoid arthritis. Drugs 2006; 66(5): 625–39

    Article  PubMed  CAS  Google Scholar 

  38. Edwards JC, Szczepanski L, Szechinski J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350: 2572–81

    Article  PubMed  CAS  Google Scholar 

  39. Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment. Arthritis Rheum 2006; 54: 1390–400

    Article  PubMed  CAS  Google Scholar 

  40. Tobinai K, Kobayashi Y, Narabayashi M, et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma: The IDEC-C2B8 Study Group. Ann Oncol 1998; 9: 527–34

    Article  PubMed  CAS  Google Scholar 

  41. Pescovitz MD. Rituximab, an anti-CD20 monoclonal antibody: history and mechanism of action. Am J Transplant 2006; 6: 859–66

    Article  PubMed  CAS  Google Scholar 

  42. Ng CM, Bruno R, Combs D, et al. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol 2005; 45: 792–801

    Article  PubMed  CAS  Google Scholar 

  43. McLaughlin P, Grillo-Lopez A, Link B, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–33

    PubMed  CAS  Google Scholar 

  44. Vieira CA, Agarwal A, Book BK, et al. Rituximab for reduction of anti-HLA antibodies in patients awaiting renal transplantation: 1. Safety, pharmacodynamics, and pharmacokinetics. Transplantation 2004; 77: 542–8

    Article  PubMed  CAS  Google Scholar 

  45. Edwards JC, Leandro MJ, Cambridge G. B lymphocyte depletion therapy with rituximab in rheumatoid arthritis. Rheum Dis Clin North Am 2004; 30: 393–403

    Article  PubMed  CAS  Google Scholar 

  46. Looney RJ, Anolik JH, Campbell D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 2004; 50: 2580–9

    Article  PubMed  CAS  Google Scholar 

  47. Eisenberg R. Update on rituximab. Ann Rheum Dis 2005; 64 Suppl. 4: iv55–7

    Article  PubMed  CAS  Google Scholar 

  48. Leandro M, Edwards J, Cambridge G, et al. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2673–7

    Article  PubMed  Google Scholar 

  49. Sfikakis PP, Boletis JN, Lionaki S, et al. Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 2005; 52: 501–3

    Article  PubMed  CAS  Google Scholar 

  50. Sfikakis PP, Boletis JN, Tsokos GC. Rituximab anti-B-cell therapy in systemic lupus erythematosus: pointing to the future. Curr Opin Rheumatol 2005; 17: 550–7

    Article  PubMed  CAS  Google Scholar 

  51. Leandro MJ, Cambridge G, Edwards JC, et al. B-cell depletion in the treatment of patients with systemic lupus erythematosus: a longitudinal analysis of 24 patients. Rheumatology 2005; 44: 1542–5

    Article  PubMed  CAS  Google Scholar 

  52. Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, et al. Clinical and immunologic effects of rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther 2006; 3(8): R83

    Article  Google Scholar 

  53. Albert D, Khan S, Stansberry J, et al. A phase I trial of rituximab (anti-CD20) for treatment of systemic lupus erythematosus [abstract]. Arthritis Rheum 2004; 9: S446

    Google Scholar 

  54. Marks SD, Patey S, Brogan PA, et al. B lymphocyte depletion therapy in children with refractory systemic lupus erythematosus. Arthritis Rheum 2005; 52: 3168–74

    Article  PubMed  CAS  Google Scholar 

  55. Tokunaga M, Fujii K, Saito K, et al. Down-regulation of CD40 and CD80 on B cells in patients with life-threatening systemic lupus erythematosus after successful treatment with rituximab. Rheumatology 2005; 44: 176–82

    Article  PubMed  CAS  Google Scholar 

  56. Smith KGC, Jones RB, Burns SM, et al. Long-term comparison of rituximab treatment for referactory systemic lupus erythematosus and vasculitis: remission, relapse, and re-treatment. Arthritis Rheum 2006 Sep; 54(9): 2970–82

    Article  PubMed  CAS  Google Scholar 

  57. Willems M, Haddad E, Niaudet P, et al. Rituximab therapy for childhood-onset systemic lupus erythematosus. J Pediatr 2006; 148: 623–7

    Article  PubMed  CAS  Google Scholar 

  58. US National Institutes of Health. A study to evaluate the efficacy and safety of rituximab in patients with severe systemic lupus erythematosus (SLE) [online]. Available from URL: http://www.clinicaltrials.gov/ct/show/NCT00137969?order=2 [Accessed 2006 Sep 27]

  59. US National Institutes of Health. A study to evaluate the efficacy and safety of rituximab in subjects with ISN/RPS class III or IV lupus nephritis [online]. Available from URL: http://www.clinicaltrials.gov/ct/show/NCT00282347?order=1 [Accessed 2006 Oct 6]

  60. Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nature Rev Immunol 2006; 6: 394–403

    Article  CAS  Google Scholar 

  61. Leandro MJ, Cambridge G, Ehrenstein MR, et al. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54: 613–20

    Article  PubMed  CAS  Google Scholar 

  62. Hainsworth JD. Prolonging remission with rituximab maintenance therapy. Semin Oncol 2004; 31: 17–21

    Article  PubMed  CAS  Google Scholar 

  63. Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol 2001; 19: 2153–64

    PubMed  CAS  Google Scholar 

  64. Byrd JC, Peterson BL, Morrison VA, et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment swith rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 2003; 101: 6–4

    Article  PubMed  CAS  Google Scholar 

  65. Maini R, St Clair E, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomized phase III trial. ATTRACT Study Group. Lancet 1999; 354(9194): 1932–9

    Article  PubMed  CAS  Google Scholar 

  66. Maeda T, Yamada Y, Tawara M, et al. Successful treatment with a chimeric anti-CD20 monoclonal antibody for a patient with relapsed mantle cell lymphoma who developed a human anti-chimeric antibody. Int J Hematol 2001; 74: 70–5

    Article  PubMed  CAS  Google Scholar 

  67. D’Arcy C, Mannik M. Serum sickness secondary to treatment with the murine human chimeric antibody IDEC-C2B 8. Arthritis Rheum 2001; 44: 1717–8

    Article  PubMed  Google Scholar 

  68. Herishanu Y. Rituximab induced serum sickness. Am J Hematol 2002; 70(4): 329

    Article  PubMed  Google Scholar 

  69. Cambridge G, Leandro MJ, Edwards JC, et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum 2003; 48: 2146–54

    Article  PubMed  Google Scholar 

  70. Ghielmini M, Schmitz SF, Cogliatti S, et al. Effect of single-agent rituximab given at the standard schedule or as prolonged treatment in patients with mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research (SAKK). J Clin Oncol 2005; 23: 705–11

    Article  PubMed  CAS  Google Scholar 

  71. Ghielmini M, Schmitz SF, Cogliatti SB, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly × 4 schedule. Blood 2004; 103: 4416–23

    Article  PubMed  CAS  Google Scholar 

  72. Ng K, Leandro MJ, Edwards JC, et al. Repeated B cell depletion in treatment of refractory systemic lupus erythematosus. Ann Rheum Dis 2006; 65: 942–5

    Article  PubMed  CAS  Google Scholar 

  73. Gonzalez-Stawinski GV, Yu PB, Love SD, et al. Hapten-induced primary and memory humoral responses are inhibited by the infusion of anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab). Clin Immunol 2001 Feb; 98(2): 175–9

    Article  PubMed  CAS  Google Scholar 

  74. Van der Kolk L, Baars J, Prins M, et al. Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood 2002; 100: 2257–9

    PubMed  Google Scholar 

  75. Bearden CM, Agarwal A, Book BK, et al. Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX 174. Am J Transplant 2005; 5: 50–7

    Article  PubMed  CAS  Google Scholar 

  76. Cuss A, Avery D, Cannons J, et al. Expansion of functionally immature transitional B cells is associated with human immunodeficient states characterized by impaired humoral immunity. J Immunol 2006; 176: 1506–16

    PubMed  CAS  Google Scholar 

  77. Stein R, Qu Z, Chen S, et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin’s lymphoma. Clin Cancer Res 2004; 10: 2868–78

    Article  PubMed  CAS  Google Scholar 

  78. Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004; 104: 1793–800

    Article  PubMed  CAS  Google Scholar 

  79. Dorner T, Kaufmann J, Wegener W, et al. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 2006; 3(8): R74

    Article  Google Scholar 

  80. Furie R. Abetimus sodium (riquent) for the prevention of nephritic flares in patients with systemic lupus erythematosus. Rheum Dis Clin North Am 2006; 32: 149–56

    Article  PubMed  Google Scholar 

  81. Wang X, Huang W, Schiffer LE, et al. Effects of anti-CD154 treatment on B cells in murine systemic lupus erythematosus. Arthritis Rheum 2003; 48: 495–506

    Article  PubMed  CAS  Google Scholar 

  82. Kalunian KC, Davis JC, Merrill JT, et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002; 46: 3251–8

    Article  PubMed  CAS  Google Scholar 

  83. Boumpas DT, Furie R, Manzi S, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 2003; 48: 719–27

    Article  PubMed  CAS  Google Scholar 

  84. Huang W, Sinha J, Newman J, et al. The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum 2002; 46: 1554–62

    Article  PubMed  CAS  Google Scholar 

  85. Grammer A, Slota R, Fischer R, et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 2003; 112: 1506–20

    PubMed  CAS  Google Scholar 

  86. Daikh DI, Wofsy D. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol 2001; 166: 2913–6

    PubMed  CAS  Google Scholar 

  87. Abrams JR, Lebwohl MG, Guzzo CA, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999; 103: 1243–52

    Article  PubMed  CAS  Google Scholar 

  88. Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003; 349: 1907–5

    Article  PubMed  CAS  Google Scholar 

  89. Lesley R, Xu Y, Kalled SL, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 2004; 20: 441–53

    Article  PubMed  CAS  Google Scholar 

  90. Mackay F, Woodcock S, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999; 190: 1697–710

    Article  PubMed  CAS  Google Scholar 

  91. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 2003; 48: 3475–86

    Article  PubMed  Google Scholar 

  92. Furie R, Stohl W, Ginzler E, et al. Safety, pharmacokinetic and pharmacodynamic results of a phase I single and double dose-escalation study of lymphoStat-B (human monoclonal antibody to BLyS) in SLE patients [abstract]. Arthritis Rheum 2003; 48(9): S377

    Google Scholar 

  93. Wallace DJ, Lisse J, Stohl W, et al. Belimumab (LymphoStat-B) shows bioactivity and reduces SLE disease activity [oral presentation]. European Congress of Rheumatology; 2006 Jun 21–23; Amsterdam

  94. Furie R, Lisse J, Merrill JT, et al. Multiple SLE disease activity measures in a multi-center phase 2 SLE trial demonstrate bilimumab improves or stabilizes SLE activity in serologically active SLE patients [oral presentation]. European Congress of Rheumatology; 2006 Jun 21–23; Amsterdam

Download references

Acknowledgements

Dr Anolik is supported by NIH-NIAMS K08AR048303, the Lupus Foundation of America, and the Alliance for Lupus Research. The phase I/II clinical trial at the University of Rochester was supported in part by grants from Genentech (South San Francisco, CA) and IDEC Pharmaceuticals (San Diego, CA). Dr Anolik has received grants from Amgen Pharmaceuticals, currently serves as a consultant for Genentech, and has active grant support from Genentech for mechanistic studies in their ongoing multicentre lupus trials. Dr Sabahi has no conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Anolik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabahi, R., Anolik, J.H. B-Cell-Targeted Therapy for Systemic Lupus Erythematosus. Drugs 66, 1933–1948 (2006). https://doi.org/10.2165/00003495-200666150-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666150-00004

Keywords

Navigation