Skip to main content
Log in

Does Treating Subclinical Hypothyroidism Improve Markers of Cardiovascular Risk?

  • Current Opinion
  • Published:
Treatments in Endocrinology

Abstract

Subclinical hypothyroidism is defined as an elevated serum thyroid-stimulating hormone (TSH) level in the face of normal free thyroid hormone values. The overall prevalence of subclinical hypothyroidism is 4–10% in the general population and up to 20% in women aged >60 years. The potential benefits and risks of therapy for subclinical hypothyroidism have been debated for 2 decades, and a consensus is still lacking. Besides avoiding the progression to overt hypothyroidism, the decision to treat patients with subclinical hypothyroidism relies mainly on the risk of metabolic and cardiovascular alterations. Subclinical hypothyroidism causes changes in cardiovascular function similar to, but less marked than, those occurring in patients with overt hypothyroidism. Diastolic dysfunction both at rest and upon effort is the most consistent cardiac abnormality in patients with subclinical hypothyroidism, and also in those with slightly elevated TSH levels (>6 mIU/L). Moreover, mild thyroid failure may increase diastolic blood pressure as a result of increased systemic vascular resistance. Restoration of euthyroidism by levothyroxine replacement is generally able to improve all these abnormalities. Early clinical and autopsy studies had suggested an association between subclinical hypothyroidism and coronary heart disease, which has been subsequently confirmed by some, but not all, large cross-sectional and prospective studies. Altered coagulation parameters, elevated lipoprotein (a) levels, and low-grade chronic inflammation are regarded to coalesce with the hypercholesterolemia of untreated patients with subclinical hypothyroidism to enhance the ischemic cardiovascular risk. Although a consensus is still lacking, the strongest evidence for a beneficial effect of levothyroxine replacement on markers of cardiovascular risk is the substantial demonstration that restoration of euthyroidism can lower both total and low-density lipoprotein-cholesterol levels in most patients with subclinical hypothyroidism. However, the actual effectiveness of thyroid hormone substitution in reducing the risk of cardiovascular events remains to be elucidated. In conclusion, the multiplicity and the possible reversibility of subclinical hypothyroidism-associated cardiovascular abnormalities suggest that the decision to treat a patient should depend on the presence of risk factors, rather than on a TSH threshold. On the other hand, levothyroxine replacement therapy can always be discontinued if there is no apparent benefit. Levothyroxine replacement therapy is usually safe providing that excessive administration is avoided by monitoring serum TSH levels. However, the possibility that restoring euthyroidism may be harmful in the oldest of the elderly population of hypothyroid patients has been recently raised, and should be taken into account in making the decision to treat patients with subclinical hypothyroidism who are aged >85 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1

Similar content being viewed by others

References

  1. Ross DS. Subclinical hypothyroidism. In: Braveman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 8th ed. New York: Lippincott Williams and Wilkins, 2000: 1001–6

    Google Scholar 

  2. Andersen S, Pedersen KM, Bruun NH, et al. Narrow individual variations in serum T (4) and T (3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab 2002; 87(3): 1068–72

    Article  PubMed  CAS  Google Scholar 

  3. Biondi B, Klein I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 2004; 24: 1–13

    Article  PubMed  CAS  Google Scholar 

  4. Cooper DS. Clinical practice: subclinical hypothyroidism. N Engl J Med 2001; 345(4): 260–5

    Article  PubMed  CAS  Google Scholar 

  5. Owen PJ, Lazarus JH. Subclinical hypothyroidism: the case for treatment. Trends Endocrinol Metab 2003; 14(6): 257–61

    Article  PubMed  CAS  Google Scholar 

  6. Lekakis J, Papamichael C, Alevizaki M, et al. Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high-normal serum thyrotropin (TSH) values. Thyroid 1997; 7(3): 411–4

    Article  PubMed  CAS  Google Scholar 

  7. Bindels AJ, Westendorp RG, Frolich M, et al. The prevalence of subclinical hypothyroidism at different total plasma cholesterol levels in middle aged men and women: a need for case-finding? Clin Endocrinol (Oxf) 1999; 50(2): 217–20

    Article  CAS  Google Scholar 

  8. Faber J, Petersen L, Wiinberg N, et al. Hemodynamic changes after levothyroxine treatment in subclinical hypothyroidism. Thyroid 2002; 12(4): 319–24

    Article  PubMed  CAS  Google Scholar 

  9. Fazio S, Palmieri EA, Lombardi G, et al. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 2004; 59: 31–50

    Article  PubMed  CAS  Google Scholar 

  10. Surks MI, Ortiz E, Daniels GH, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 2004; 291(2): 228–38

    Article  PubMed  CAS  Google Scholar 

  11. Cooper DS. Subclinical thyroid disease: a clinician’s perspective. Ann Intern Med 1998; 129(2): 135–8

    PubMed  CAS  Google Scholar 

  12. Cushing GW. Subclinical hypothyroidism: understanding is the key to decision making. Postgrad Med 1993; 94(1): 95–7, 100-2, 106-7

    PubMed  CAS  Google Scholar 

  13. Gussekloo J, van Exel E, de Craen AJ, et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 2004; 292(21): 2591–9

    Article  PubMed  CAS  Google Scholar 

  14. Rivolta G, Cerutti R, Colombo R, et al. Prevalence of subclinical hypothyroidism in a population living in the Milan metropolitan area. J Endocrinol Invest 1999; 22(9): 693–7

    PubMed  CAS  Google Scholar 

  15. Kanaya AM, Harris F, Volpato S, et al. Association between thyroid dysfunction and total cholesterol level in an older biracial population: the health, aging and body composition study. Arch Intern Med 2002; 162(7): 773–9

    Article  PubMed  Google Scholar 

  16. Spencer CA, Takeuchi M, Kazarosyan M. Current status and performance goals for serum thyrotropin (TSH) assays. Clin Chem 1996; 42(1): 140–5

    PubMed  CAS  Google Scholar 

  17. Vanderpump MP, Tunbridge WM, French JM, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 1995; 43(1): 55–68

    Article  CAS  Google Scholar 

  18. Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 1977; 7(6): 481–93

    Article  CAS  Google Scholar 

  19. Sawin CT, Castelli WP, Hershman JM, et al. The aging thyroid: thyroid deficiency in the Framingham Study. Arch Intern Med 1985; 145(8): 1386–8

    Article  PubMed  CAS  Google Scholar 

  20. Wang C, Crapo LM. The epidemiology of thyroid disease and implications for screening. Endocrinol Metab Clin North Am 1997; 26(1): 189–218

    Article  PubMed  CAS  Google Scholar 

  21. Samuels MH. Subclinical thyroid disease in the elderly. Thyroid 1998; 8(9): 803–13

    Article  PubMed  CAS  Google Scholar 

  22. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T (4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002; 87(2): 489–99

    Article  PubMed  CAS  Google Scholar 

  23. Robuschi G, Safran M, Braverman LE, et al. Hypothyroidism in the elderly. Endocr Rev 1987; 8(2): 142–53

    Article  PubMed  CAS  Google Scholar 

  24. Kung AW, Janus ED. Thyroid dysfunction in ambulatory elderly Chinese subjects in an area of borderline iodine intake. Thyroid 1996; 6(2): 111–4

    Article  PubMed  CAS  Google Scholar 

  25. Canaris GJ, Manowitz NR, Mayor G, et al. The Colorado Thyroid Disease Prevalence Study. Arch Intern Med 2000; 160(4): 526–34

    Article  PubMed  CAS  Google Scholar 

  26. Parle JV, Franklyn JA, Cross KW, et al. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin Endocrinol (Oxf) 1991; 34(1): 77–83

    Article  CAS  Google Scholar 

  27. Sawin CT, Chopra D, Azizi F, et al. The aging thyroid: increased prevalence of elevated serum thyrotropin levels in the elderly. JAMA 1979; 242(3): 247–50

    Article  PubMed  CAS  Google Scholar 

  28. Campbell AJ, Reinken J, Allan BC. Thyroid disease in the elderly in the community. Age Ageing 1981; 10(1): 47–52

    Article  PubMed  CAS  Google Scholar 

  29. Huber G, Staub JJ, Meier C, et al. Prospective study of the spontaneous course of subclinical hypothyroidism: prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J Clin Endocrinol Metab 2002; 87(7): 3221–6

    Article  PubMed  CAS  Google Scholar 

  30. Diez JJ, Iglesias P. Spontaneous subclinical hypothyroidism in patients older than 55 years: an analysis of natural course and risk factors for the development of overt thyroid failure. J Clin Endocrinol Metab 2004; 89(10): 4890–7

    Article  PubMed  CAS  Google Scholar 

  31. Helfand M, Redfern CC. Clinical guideline, part 2: screening for thyroid disease: an update. American College of Physicians. Ann Intern Med 1998; 129(2): 144–58

    PubMed  CAS  Google Scholar 

  32. Kumana CR, Cheung BM, Lauder IJ. Gauging the impact of statins using number needed to treat. JAMA 1999; 282(20): 1899–901

    Article  PubMed  CAS  Google Scholar 

  33. Gharib H, Tuttle RM, Baskin HJ, et al. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J Clin Endocrinol Metab 2005; 90(1): 581–5

    Article  PubMed  CAS  Google Scholar 

  34. Ladenson PW, Singer PA, Ain KB, et al. American Thyroid Association guidelines for detection of thyroid dysfunction. Arch Intern Med 2000; 160: 1573–5

    Article  PubMed  CAS  Google Scholar 

  35. American Academy of Family Physicians. Summary of policy recommendations for periodic health examinations. Lewood (KS): American Academy of Family Physicians, 2002

    Google Scholar 

  36. American College of Obstetrics and Gynecology ACOG practice bulletin: clinical management guidelines for obstetrician-gynecologists. Obstet Gynecol 2002; 100: 387–96

    Article  Google Scholar 

  37. American College of Physicians clinical guideline: I. Screening for thyroid disease. Ann Intern Med 1998; 129: 141–3

    Google Scholar 

  38. US Preventive Services Task Force. Screening for thyroid disease: guide to clinical preventive services. 2nd ed. Baltimore (MD): Williams & Wilkins, 1996

    Google Scholar 

  39. Vanderpump MP, Ahlquist JA, Franklyn JA, et al. Consensus statement for good practice and audit measures in the management of hypothyroidism and hyperthyroidism: the Research Unit of the Royal College of Physicians of London, the Endocrinology and Diabetes Committee of the Royal College of Physicans of London, and the Society for Endocrinology. BMJ 1996; 313: 539–44

    Article  PubMed  Google Scholar 

  40. American Association of Clinical Endocrinologists and the American College of Endocrinology AACE clinical practice guidelines for the evaluation and treatment of hyperthyroidism and hypothyroidism. Endocr Pract 1995; 1: 56–62

    Google Scholar 

  41. Beaulieu MD. Screening for thyroid disorders and thyroid cancer asymptomatic adults. In: Canadian Task Force on the Periodic Health Examination. Canadian guide to clinical preventive health care. Ottawa (ON): Health Canada, 1994: 612–8

    Google Scholar 

  42. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344(7): 501–9

    Article  PubMed  CAS  Google Scholar 

  43. Hamilton MA, Stevenson LW, Luu M, et al. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 1990; 16(1): 91–5

    Article  PubMed  CAS  Google Scholar 

  44. Klein I, Ojamaa K. Thyroid hormone treatment of congestive heart failure. Am J Cardiol 1998; 81(4): 490–1

    Article  PubMed  CAS  Google Scholar 

  45. Bettendorf M, Schmidt KG, Tiefenbacher U, et al. Transient secondary hypothyroidism in children after cardiac surgery. Pediatr Res 1997; 41(3): 375–9

    Article  PubMed  CAS  Google Scholar 

  46. Klemperer JD, Klein I, Gomez M, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 1995; 333(23): 1522–7

    Article  PubMed  CAS  Google Scholar 

  47. Dillmann WH. Biochemical basis of thyroid hormone action in the heart. Am J Med 1990; 88(6): 626–30

    Article  PubMed  CAS  Google Scholar 

  48. Everts ME, Verhoeven FA, Bezstarosti K, et al. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 1996; 137(10): 4235–42

    Article  PubMed  CAS  Google Scholar 

  49. Brent GA. The molecular basis of thyroid hormone action. N Engl J Med 1994; 331(13): 847–53

    Article  PubMed  CAS  Google Scholar 

  50. Ojamaa K, Klemperer JD, MacGilvray SS, et al. Thyroid hormone and hemodynamic regulation of beta-myosin heavy chain promoter in the heart. Endocrinology 1996; 137(3): 802–8

    Article  PubMed  CAS  Google Scholar 

  51. Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation 1993; 87(5): 1451–60

    Article  PubMed  CAS  Google Scholar 

  52. Kiss E, Jakab G, Kranias EG, et al. Thyroid hormone-induced alterations in phospholamban protein expression: regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 1994; 75(2): 245–51

    Article  PubMed  CAS  Google Scholar 

  53. Davis PJ, Davis FB. Acute cellular actions of thyroid hormone and myocardial function. Ann Thorac Surg 1993; 56(1 Suppl.): S16–23

    Article  PubMed  CAS  Google Scholar 

  54. Walker JD, Crawford FA, Kato S, et al. The novel effects of 3,5,3′-triiodo-L-thyronine on myocyte contractile function and beta-adrenergic responsiveness in dilated cardiomyopathy. J Thorac Cardiovasc Surg 1994; 108(4): 672–9

    PubMed  CAS  Google Scholar 

  55. Ojamaa K, Kenessey A, Klein I. Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 2000; 141(6): 2139–44

    Article  PubMed  CAS  Google Scholar 

  56. Levey GS, Klein I. Catecholamine-thyroid hormone interactions and the cardiovascular manifestations of hyperthyroidism. Am J Med 1990; 88(6): 642–6

    Article  PubMed  CAS  Google Scholar 

  57. Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 1996; 6(5): 505–12

    Article  PubMed  CAS  Google Scholar 

  58. Park KW, Dai HB, Ojamaa K, et al. The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries. Anesth Analg 1997; 85(4): 734–8

    PubMed  CAS  Google Scholar 

  59. Mizuma H, Murakami M, Mori M. Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase. Circ Res 2001; 88(3): 313–8

    Article  PubMed  CAS  Google Scholar 

  60. Napoli R, Biondi B, Guardasole V, et al. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation 2001; 104(25): 3076–80

    Article  PubMed  CAS  Google Scholar 

  61. Biondi B, Fazio S, Palmieri EA, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab 1999; 84(6): 2064–7

    Article  PubMed  CAS  Google Scholar 

  62. Di Bello V, Monzani F, Giorgi D, et al. Ultrasonic myocardial textural analysis in subclinical hypothyroidism. J Am Soc Echocardiogr 2000; 13(9): 832–40

    Article  PubMed  Google Scholar 

  63. Monzani F, Di Bello V, Caraccio N, et al. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebocontrolled study. J Clin Endocrinol Metab 2001; 86(3): 1110–5

    Article  PubMed  CAS  Google Scholar 

  64. Vitale G, Galderisi M, Lupoli GA, et al. Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J Clin Endocrinol Metab 2002; 87(9): 4350–5

    Article  PubMed  CAS  Google Scholar 

  65. Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid 2000; 10(8): 665–79

    Article  PubMed  CAS  Google Scholar 

  66. Luboshitzky R, Aviv A, Herer P, et al. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid 2002; 12(5): 421–5

    Article  PubMed  Google Scholar 

  67. Cooper DS, Halpern R, Wood LC, et al. L-thyroxine therapy in subclinical hypothyroidism: a double-blind, placebo-controlled trial. Ann Intern Med 1984; 101(1): 18–24

    PubMed  CAS  Google Scholar 

  68. Bell GM, Todd WT, Forfar JC, et al. End-organ responses to thyroxine therapy in subclinical hypothyroidism. Clin Endocrinol (Oxf) 1985; 22(1): 83–9

    Article  CAS  Google Scholar 

  69. Nystrom E, Caidahl K, Fager G, et al. A double-blind cross-over 12-month study of L-thyroxine treatment of women with ‘subclinical’ hypothyroidism. Clin Endocrinol (Oxf) 1988; 29(1): 63–75

    Article  CAS  Google Scholar 

  70. Arem R, Rokey R, Kiefe C, et al. Cardiac systolic and diastolic function at rest and exercise in subclinical hypothyroidism: effect of thyroid hormone therapy. Thyroid 1996; 6(5): 397–402

    Article  PubMed  CAS  Google Scholar 

  71. Brenta G, Mutti LA, Schnitman M, et al. Assessment of left ventricular diastolic function by radionuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol 2003; 91(11): 1327–30

    Article  PubMed  CAS  Google Scholar 

  72. Yazici M, Gorgulu S, Sertbas Y, et al. Effects of thyroxin therapy on cardiac function in patients with subclinical hypothyroidism: index of myocardial performance in the evaluation of left ventricular function. Int J Cardiol 2004; 95(2–3): 135–43

    Article  PubMed  Google Scholar 

  73. Biondi B, Palmieri EA, Lombardi G, et al. Effects of subclinical thyroid dysfunction on the heart. Ann Intern Med 2002; 137: 904–14

    PubMed  Google Scholar 

  74. Bough EW, Crowley WF, Ridgway C, et al. Myocardial function in hypothyroidism: relation to disease severity and response to treatment. Arch Intern Med 1978; 138(10): 1476–80

    Article  PubMed  CAS  Google Scholar 

  75. Ridgway EC, Cooper DS, Walker H, et al. Peripheral responses to thyroid hormone before and after L-thyroxine therapy in patients with subclinical hypothyroidism. J Clin Endocrinol Metab 1981; 53(6): 1238–42

    Article  PubMed  CAS  Google Scholar 

  76. Forfar JC, Wathen CG, Todd WT, et al. Left ventricular performance in subclinical hypothyroidism. Q J Med 1985; 57(224): 857–65

    PubMed  CAS  Google Scholar 

  77. Foldes J, Istvanfy M, Halmagyi M, et al. Hypothyroidism and the heart: examination of left ventricular function in subclinical hypothyroidism. Acta Med Hung 1987; 44(4): 337–47

    PubMed  CAS  Google Scholar 

  78. Tseng KH, Walfish PG, Persaud JA, et al. Concurrent aortic and mitral valve echocardiography permits measurement of systolic time intervals as an index of peripheral tissue thyroid functional status. J Clin Endocrinol Metab 1989; 69(3): 633–8

    Article  PubMed  CAS  Google Scholar 

  79. Staub JJ, Althaus BU, Engler H, et al. Spectrum of subclinical and overt hypothyroidism: effect on thyrotropin, prolactin, and thyroid reserve, and metabolic impact on peripheral target tissues. Am J Med 1992; 92(6): 631–42

    Article  PubMed  CAS  Google Scholar 

  80. Amidi M, Leon DF, DeGroot WJ, et al. Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation 1968; 38(2): 229–39

    Article  PubMed  CAS  Google Scholar 

  81. Polikar R, Burger AG, Scherrer U, et al. The thyroid and the heart. Circulation 1993; 87(5): 1435–41

    Article  PubMed  CAS  Google Scholar 

  82. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system: from theory to practice. J Clin Endocrinol Metab 1994; 78(5): 1026–7

    Article  PubMed  CAS  Google Scholar 

  83. Ooi TC, Whitlock RM, Frengley PA, et al. Systolic time intervals and ankle reflex time in patients with minimal serum TSH elevation: response to triiodothyro-nine therapy. Clin Endocrinol (Oxf) 1980; 13(6): 621–7

    Article  CAS  Google Scholar 

  84. Bastenie PA, Vanhaelst L, Neve P. Coronary-artery disease in hypothyroidism. Lancet 1967; II(7528): 1221–2

    Article  Google Scholar 

  85. Bastenie PA, Vanhaelst L, Bonnyns M, et al. Preclinical hypothyroidism: a risk factor for coronary heart-disease. Lancet 1971; I(7692): 203–4

    Article  Google Scholar 

  86. Fowler PB, Swale J, Andrews H. Hypercholesterolaemia in borderline hypothyroidism: stage of premyxoedema. Lancet 1970; II(7671): 488–91

    Article  Google Scholar 

  87. Tieche M, Lupi GA, Gutzwiller F, et al. Borderline low thyroid function and thyroid autoimmunity: risk factors for coronary heart disease? Br Heart J 1981; 46(2): 202–6

    Article  PubMed  CAS  Google Scholar 

  88. Mya MM, Aronow WS. Subclinical hypothyroidism is associated with coronary artery disease in older persons. J Gerontol A Biol Sci Med Sci 2002; 57(10): M658–9

    Article  PubMed  Google Scholar 

  89. Powell J, Zadeh JA, Carter G, et al. Raised serum thyrotrophin in women with peripheral arterial disease. Br J Surg 1987; 74(12): 1139–41

    Article  PubMed  CAS  Google Scholar 

  90. Miura S, Iitaka M, Suzuki S, et al. Decrease in serum levels of thyroid hormone in patients with coronary heart disease. Endocr J 1996; 43(6): 657–63

    Article  PubMed  CAS  Google Scholar 

  91. Tunbridge WM, Evered DC, Hall R, et al. Lipid profiles and cardiovascular disease in the Whickham area with particular reference to thyroid failure. Clin Endocrinol (Oxf) 1977; 7(6): 495–508

    Article  CAS  Google Scholar 

  92. Cappola AR, Ladenson PW. Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab 2003; 88(6): 2438–44

    Article  PubMed  CAS  Google Scholar 

  93. Vanderpump MP, Tunbridge WM, French JM, et al. The development of ischemic heart disease in relation to autoimmune thyroid disease in a 20-year follow-up study of an English community. Thyroid 1996; 6(3): 155–60

    PubMed  CAS  Google Scholar 

  94. Hak AE, Pols HA, Visser TJ, et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 2000; 132(4): 270–8

    PubMed  CAS  Google Scholar 

  95. Nagataki S, Shibata Y, Inoue S, et al. Thyroid diseases among atomic bomb survivors in Nagasaki. JAMA 1994; 272(5): 364–70

    Article  PubMed  CAS  Google Scholar 

  96. Imaizumi M, Akahoshi M, Ichimaru S, et al. Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J Clin Endocrinol Metab 2004; 89(7): 3365–70

    Article  PubMed  CAS  Google Scholar 

  97. Kvetny J, Heldgaard PE, Bladbjerg EM, et al. Subclinical hypothyroidism is associated with a low-grade inflammation, increased levels and predicts cardiovascular disease in males below 50 years. Clin Endocrinol (Oxf) 2004; 61(2): 232–8

    Article  CAS  Google Scholar 

  98. Lindeman RD, Romero LJ, Schade DS, et al. Impact of subclinical hypothyroidism on serum total homocysteine concentrations, the prevalence of coronary heart disease (CHD), and CHD risk factors in the New Mexico Elder Health Survey. Thyroid 2003; 13(6): 595–600

    Article  PubMed  CAS  Google Scholar 

  99. Ooka H, Fujita S, Yoshimoto E. Pituitary-thyroid activity and longevity in neonatally thyroxine-treated rats. Mech Ageing Dev 1983; 22(2): 113–20

    Article  PubMed  CAS  Google Scholar 

  100. Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit 1 (dw) can increase life span in mice. Mech Ageing Dev 2002; 123(2–3): 121–30

    Article  PubMed  CAS  Google Scholar 

  101. Cooper DS. Thyroid disease in the oldest old: the exception to the rule. JAMA 2004; 292(21): 2651–4

    Article  PubMed  CAS  Google Scholar 

  102. Luscher TF, Vanhoutte PM, The endothelium: modulator of cardiovascular function. Boca Raton (FL): CRC Press, 1990

    Google Scholar 

  103. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373–6

    Article  PubMed  CAS  Google Scholar 

  104. Abdu TA, Elhadd T, Pfeifer M, et al. Endothelial dysfunction in endocrine disease. Trends Endocrinol Metab 2001; 12(6): 257–65

    Article  PubMed  CAS  Google Scholar 

  105. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327(6122): 524–6

    Article  PubMed  CAS  Google Scholar 

  106. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333(6174): 664–6

    Article  PubMed  CAS  Google Scholar 

  107. Bredt DS, Hwang PM, Glatt CE, et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351(6329): 714–8

    Article  PubMed  CAS  Google Scholar 

  108. Taddei S, Virdis A, Ghiadoni L, et al. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998; 97(22): 2222–9

    Article  PubMed  CAS  Google Scholar 

  109. Suwaidi JA, Hamasaki S, Higano ST, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000; 101(9): 948–54

    Article  PubMed  CAS  Google Scholar 

  110. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101(16): 1899–906

    Article  PubMed  CAS  Google Scholar 

  111. Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001; 104(22): 2673–8

    Article  PubMed  CAS  Google Scholar 

  112. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39(2): 257–65

    Article  PubMed  Google Scholar 

  113. Cikim AS, Oflaz H, Ozbey N, et al. Evaluation of endothelial function in subclinical hypothyroidism and subclinical hyperthyroidism. Thyroid 2004; 14(8): 605–9

    Article  PubMed  Google Scholar 

  114. Taddei S, Caraccio N, Virdis A, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab 2003; 88(8): 3731–7

    Article  PubMed  CAS  Google Scholar 

  115. Howard G, Sharrett AR, Heiss G, et al. Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound: ARIC Investigators. Stroke 1993; 24(9): 1297–304

    Article  PubMed  CAS  Google Scholar 

  116. O’Leary DH, Polak JF. Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol 2002; 90(10C): 18L–21L

    Article  PubMed  Google Scholar 

  117. Allan PL, Mowbray PI, Lee AJ, et al. Relationship between carotid intima-media thickness and symptomatic and asymptomatic peripheral arterial disease: the Edinburgh Artery Study. Stroke 1997; 28(2): 348–53

    Article  PubMed  CAS  Google Scholar 

  118. Salonen R, Salonen JT. Determinants of carotid intima-media thickness: a population-based ultrasonography study in Eastern Finnish men. J Intern Med 1991; 229(3): 225–31

    Article  PubMed  CAS  Google Scholar 

  119. Gnasso A, Pujia A, Irace C, et al. Increased carotid arterial wall thickness in common hyperlipidemia. Coron Artery Dis 1995; 6(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  120. Gnasso A, Irace C, Mattioli PL, et al. Carotid intima-media thickness and coronary heart disease risk factors. Atherosclerosis 1996; 119(1): 7–15

    Article  PubMed  CAS  Google Scholar 

  121. Wendelhag I, Wiklund O, Wikstrand J. Arterial wall thickness in familial hypercholesterolemia: ultrasound measurement of intima-media thickness in the common carotid artery. Arterioscler Thromb 1992; 12(1): 70–7

    Article  PubMed  CAS  Google Scholar 

  122. Bots ML, Hofman A, de Bruyn AM, et al. Isolated systolic hypertension and vessel wall thickness of the carotid artery: the Rotterdam Elderly Study. Arterioscler Thromb 1993; 13(1): 64–9

    Article  PubMed  CAS  Google Scholar 

  123. Kawamori R, Yamasaki Y, Matsushima H, et al. Prevalence of carotid atherosclerosis in diabetic patients: ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care 1992; 15(10): 1290–4

    Article  PubMed  CAS  Google Scholar 

  124. Bots ML, Hoes AW, Koudstaal PJ, et al. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 1997; 96(5): 1432–7

    Article  PubMed  CAS  Google Scholar 

  125. Mannami T, Konishi M, Baba S, et al. Prevalence of asymptomatic carotid atherosclerotic lesions detected by high-resolution ultrasonography and its relation to cardiovascular risk factors in the general population of a Japanese city: the Suita Study. Stroke 1997; 28(3): 518–25

    Article  PubMed  CAS  Google Scholar 

  126. Burke GL, Evans GW, Riley WA, et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 1995; 26(3): 386–91

    Article  PubMed  CAS  Google Scholar 

  127. Nagasaki T, Inaba M, Henmi Y, et al. Decrease in carotid intima-media thickness in hypothyroid patients after normalization of thyroid function. Clin Endocrinol (Oxf) 2003; 59(5): 607–12

    Article  CAS  Google Scholar 

  128. Monzani F, Caraccio N, Kozakowa M, et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 2004; 89(5): 2099–106

    Article  PubMed  CAS  Google Scholar 

  129. Parving HH, Hansen JM, Nielsen SL, et al. Mechanisms of edema formation in myxedema: increased protein extravasation and relatively slow lymphatic drainage. N Engl J Med 1979; 301(9): 460–5

    Article  PubMed  CAS  Google Scholar 

  130. Arem R, Escalante DA, Arem N, et al. Effect of L-thyroxine therapy on lipoprotein fractions in overt and subclinical hypothyroidism, with special reference to lipoprotein (a). Metabolism 1995; 44(12): 1559–63

    Article  PubMed  CAS  Google Scholar 

  131. Roberts CG, Ladenson PW. Hypothyroidism. Lancet 2004; 363(9411): 793–803

    Article  PubMed  CAS  Google Scholar 

  132. Kinlaw WB. Atherosclerosis and the thyroid. Thyroid Today 1991; 14: 1–8

    Google Scholar 

  133. Geul KW, van Sluisveld IL, Grobbee DE, et al. The importance of thyroid microsomal antibodies in the development of elevated serum TSH in middle-aged women: associations with serum lipids. Clin Endocrinol (Oxf) 1993; 39(3): 275–80

    Article  CAS  Google Scholar 

  134. Vierhapper H, Nardi A, Grosser P, et al. Low-density lipoprotein cholesterol in subclinical hypothyroidism. Thyroid 2000; 10(11): 981–4

    Article  PubMed  CAS  Google Scholar 

  135. Hueston WJ, Pearson WS. Subclinical hypothyroidism and the risk of hypercholesterolemia. Ann Fam Med 2004; 2(4): 351–5

    Article  PubMed  Google Scholar 

  136. Bauer DC, Ettinger B, Browner WS. Thyroid functions and serum lipids in older women: a population-based study. Am J Med 1998; 104(6): 546–51

    Article  PubMed  CAS  Google Scholar 

  137. Tanis BC, Westendorp GJ, Smelt HM. Effect of thyroid substitution on hypercholesterolaemia in patients with subclinical hypothyroidism: a reanalysis of intervention studies. Clin Endocrinol (Oxf) 1996; 44(6): 643–9

    Article  CAS  Google Scholar 

  138. Bogner U, Arntz HR, Peters H, et al. Subclinical hypothyroidism and hyperlipoproteinaemia: indiscriminate L-thyroxine treatment not justified. Acta Endocrinol (Copenh) 1993; 128(3): 202–6

    CAS  Google Scholar 

  139. Efstathiadou Z, Bitsis S, Milionis HJ, et al. Lipid profile in subclinical hypothyroidism: is L-thyroxine substitution beneficial? Eur J Endocrinol 2001; 145(6): 705–10

    Article  PubMed  CAS  Google Scholar 

  140. Yildirimkaya M, Ozata M, Yilmaz K, et al. Lipoprotein (a) concentration in subclinical hypothyroidism before and after levo-thyroxine therapy. Endocr J 1996; 43(6): 731–6

    Article  PubMed  CAS  Google Scholar 

  141. Kung AW, Pang RW, Janus ED. Elevated serum lipoprotein (a) in subclinical hypothyroidism. Clin Endocrinol (Oxf) 1995; 43(4): 445–9

    Article  CAS  Google Scholar 

  142. Miura S, Iitaka M, Yoshimura H, et al. Disturbed lipid metabolism in patients with subclinical hypothyroidism: effect of L-thyroxine therapy. Intern Med 1994; 33(7): 413–7

    Article  PubMed  CAS  Google Scholar 

  143. Caron P, Calazel C, Parra HJ, et al. Decreased HDL cholesterol in subclinical hypothyroidism: the effect of L-thyroxine therapy. Clin Endocrinol (Oxf) 1990; 33(4): 519–23

    Article  CAS  Google Scholar 

  144. Forga L, Iriarte A, Calderon DM, et al. Lipidic changes in subclinical hypothyroidism: evolution according to whether or not corrections are made of TSH levels. An Sist Sanit Navar 1998; 21(3): 313–8

    PubMed  CAS  Google Scholar 

  145. Muller B, Tsakiris DA, Roth CB, et al. Haemostatic profile in hypothyroidism as potential risk factor for vascular or thrombotic disease. Eur J Clin Invest 2001; 31(2): 131–7

    Article  PubMed  CAS  Google Scholar 

  146. Tagliaferri M, Berselli ME, Calo G, et al. Subclinical hypothyroidism in obese patients: relation to resting energy expenditure, serum leptin, body composition, and lipid profile. Obes Res 2001; 9(3): 196–201

    Article  PubMed  CAS  Google Scholar 

  147. Luboshitzky R, Herer P. Cardiovascular risk factors in middle-aged women with subclinical hypothyroidism. Neuro Endocrinol Lett 2004; 25(4): 262–6

    PubMed  Google Scholar 

  148. Tzotzas T, Krassas GE, Konstantinidis T, et al. Changes in lipoprotein (a) levels in overt and subclinical hypothyroidism before and during treatment. Thyroid 2000; 10(9): 803–8

    Article  PubMed  CAS  Google Scholar 

  149. Lithell H, Boberg J, Hellsing K, et al. Serum lipoprotein and apolipoprotein concentrations and tissue lipoprotein-lipase activity in overt and subclinical hypothyroidism: the effect of substitution therapy. Eur J Clin Invest 1981; 11(1): 3–10

    Article  PubMed  CAS  Google Scholar 

  150. Diekman T, Lansberg PJ, Kastelein JJ, et al. Prevalence and correction of hypothyroidism in a large cohort of patients referred for dyslipidemia. Arch Intern Med 1995; 155(14): 1490–5

    Article  PubMed  CAS  Google Scholar 

  151. Romaldini JH, Biancalana MM, Figueiredo DI, et al. Effect of L-thyroxine administration on antithyroid antibody levels, lipid profile, and thyroid volume in patients with Hashimoto’s thyroiditis. Thyroid 1996; 6(3): 183–8

    PubMed  CAS  Google Scholar 

  152. Michalopoulou G, Alevizaki M, Piperingos G, et al. High serum cholesterol levels in persons with ‘high-normal’ TSH levels: should one extend the definition of subclinical hypothyroidism? Eur J Endocrinol 1998; 138(2): 141–5

    Article  PubMed  CAS  Google Scholar 

  153. Danese MD, Ladenson PW, Meinert CL, et al. Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab 2000; 85(9): 2993–3001

    Article  PubMed  CAS  Google Scholar 

  154. Meier C, Staub JJ, Roth CB, et al. TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double-blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab 2001; 86(10): 4860–6

    Article  PubMed  CAS  Google Scholar 

  155. Caraccio N, Ferrannini E, Monzani F. Lipoprotein profile in subclinical hypothyroidism: response to levothyroxine replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab 2002; 87(4): 1533–8

    Article  PubMed  CAS  Google Scholar 

  156. Kong WM, Sheikh MH, Lumb PJ, et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am J Med 2002; 112(5): 348–54

    Article  PubMed  CAS  Google Scholar 

  157. Milionis HJ, Efstathiadou Z, Tselepis AD, et al. Lipoprotein (a) levels and apolipoprotein (a) isoform size in patients with subclinical hypothyroidism: effect of treatment with levothyroxine. Thyroid 2003; 13(4): 365–9

    Article  PubMed  CAS  Google Scholar 

  158. Perez A, Cubero JM, Sucunza N, et al. Emerging cardiovascular risk factors in subclinical hypothyroidism: lack of change after restoration of euthyroidism. Metabolism 2004; 53(11): 1512–5

    Article  PubMed  CAS  Google Scholar 

  159. Ito M, Takamatsu J, Sasaki I, et al. Disturbed metabolism of remnant lipoproteins in patients with subclinical hypothyroidism. Am J Med 2004; 117(9): 696–9

    Article  PubMed  CAS  Google Scholar 

  160. Canturk Z, Cetinarslan V, Tarkun I, et al. Lipid profile and lipoprotein(a) a risk factor for cardiovascular disease in women with subclinical hypothyroidism. Endocrine Res 2003: 29: 307–16

    Article  CAS  Google Scholar 

  161. Serter R, Demirbas B, Korukluoglu B, et al. The effect of L-thyroxine replacement therapy on lipid based cardiovascular risk in subclinical hypothyroidism. J Endocrinol Invest 2004; 27: 897–903

    PubMed  CAS  Google Scholar 

  162. Jaeschke R, Guyatt G, Gerstein H, et al. Does treatment with L-thyroxine influence health status in middle-aged and older adults with subclinical hypothyroidism? J Gen Intern Med 1996; 11(12): 744–9

    Article  PubMed  CAS  Google Scholar 

  163. Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 1994; 308(6925): 367–72

    Article  PubMed  CAS  Google Scholar 

  164. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260(5): 641–51

    Article  PubMed  CAS  Google Scholar 

  165. Sundaram V, Hanna AN, Koneru L, et al. Both hypothyroidism and hyperthyroidism enhance low density lipoprotein oxidation. J Clin Endocrinol Metab 1997; 82(10): 3421–4

    Article  PubMed  CAS  Google Scholar 

  166. Diekman T, Demacker PN, Kastelein JJ, et al. Increased oxidizability of low-density lipoproteins in hypothyroidism. J Clin Endocrinol Metab 1998; 83(5): 1752–5

    Article  PubMed  CAS  Google Scholar 

  167. Duntas LH, Mantzou E, Koutras DA. Circulating levels of oxidized low-density lipoprotein in overt and mild hypothyroidism. Thyroid 2002; 12(11): 1003–7

    Article  PubMed  CAS  Google Scholar 

  168. Phillips NR, Waters D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 1993; 88(6): 2762–70

    Article  PubMed  CAS  Google Scholar 

  169. Havel RJ. Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol 1994; 5(2): 102–9

    Article  PubMed  CAS  Google Scholar 

  170. Bostom AG, Cupples LA, Jenner JL, et al. Elevated plasma lipoprotein (a) and coronary heart disease in men aged 55 years and younger: a prospective study. JAMA 1996; 276(7): 544–8

    Article  PubMed  CAS  Google Scholar 

  171. Surks MI, Ocampo E. Subclinical thyroid disease. Am J Med 1996; 100(2): 217–23

    Article  PubMed  CAS  Google Scholar 

  172. Thompson SG, Kienast J, Pyke SD, et al. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris: European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995; 332(10): 635–41

    Article  PubMed  CAS  Google Scholar 

  173. Ma J, Hennekens CH, Ridker PM, et al. A prospective study of fibrinogen and risk of myocardial infarction in the Physicians’ Health Study. J Am Coll Cardiol 1999; 33(5): 1347–52

    Article  PubMed  CAS  Google Scholar 

  174. Hackam DG, Anand SS. Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 2003; 290(7): 932–40

    Article  PubMed  Google Scholar 

  175. Martinez-Triguero ML, Hernandez-Mijares A, Nguyen TT, et al. Effect of thyroid hormone replacement on lipoprotein (a), lipids, and apolipoproteins in subjects with hypothyroidism. Mayo Clin Proc 1998; 73(9): 837–41

    Article  PubMed  CAS  Google Scholar 

  176. Pazos F, Alvarez JJ, Rubies-Prat J, et al. Long-term thyroid replacement therapy and levels of lipoprotein (a) and other lipoproteins. J Clin Endocrinol Metab 1995; 80(2): 562–6

    Article  PubMed  CAS  Google Scholar 

  177. Tsimihodimos V, Bairaktari E, Tzallas C, et al. The incidence of thyroid function abnormalities in patients attending an outpatient lipid clinic. Thyroid 1999; 9(4): 365–8

    Article  PubMed  CAS  Google Scholar 

  178. Ganotakis ES, Mandalaki K, Tampakaki M, et al. Subclinical hypothyroidism and lipid abnormalities in older women attending a vascular disease prevention clinic: effect of thyroid replacement therapy. Angiology 2003; 54(5): 569–76

    Article  PubMed  Google Scholar 

  179. Lotz H, Salabe GB. Lipoprotein (a) increase associated with thyroid autoimmunity. Eur J Endocrinol 1997; 136(1): 87–91

    Article  PubMed  CAS  Google Scholar 

  180. Nygard O, Refsum H, Ueland PM, et al. Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 1998; 67(2): 263–70

    PubMed  CAS  Google Scholar 

  181. Selhub J, Jacques PF, Wilson PW, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270(22): 2693–8

    Article  PubMed  CAS  Google Scholar 

  182. Hoffer LJ, Robitaille L, Elian KM, et al. Plasma reduced homocysteine concentrations are increased in end-stage renal disease. Kidney Int 2001; 59(1): 372–7

    Article  PubMed  CAS  Google Scholar 

  183. Hussein WI, Green R, Jacobsen DW, et al. Normalization of hyperhomocysteinemia with L-thyroxine in hypothyroidism. Ann Intern Med 1999; 131(5): 348–51

    PubMed  CAS  Google Scholar 

  184. Diekman MJ, van der Put NM, Blom HJ, et al. Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism. Clin Endocrinol (Oxf) 2001; 54(2): 197–204

    Article  CAS  Google Scholar 

  185. Ingenbleek Y, Barclay D, Dirren H. Nutritional significance of alterations in serum amino acid patterns in goitrous patients. Am J Clin Nutr 1986; 43(2): 310–9

    PubMed  CAS  Google Scholar 

  186. Christ-crain M. Meier C Guglielmetti M, et al. Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial. Atherosclerosis 2003; 166(2): 379–86

    Article  PubMed  CAS  Google Scholar 

  187. Deicher R, Vierhapper H. Homocysteine: a risk factor for cardiovascular disease in subclinical hypothyroidism? Thyroid 2002; 12(8): 733–6

    Article  PubMed  CAS  Google Scholar 

  188. Marqusee E, Mandel SJ. The blood in hypothyroidism. In: Braveman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 8th ed. New York: Lippincott Williams and Wilkins, 2000: 800–2

    Google Scholar 

  189. Canturk Z, Cetinarslan B, Tarkun I, et al. Hemostatic system as a risk factor for cardiovascular disease in women with subclinical hypothyroidism. Thyroid 2003; 13(10): 971–7

    Article  PubMed  CAS  Google Scholar 

  190. Chadarevian R, Bruckert E, Leenhardt L, et al. Components of the fibrinolytic system are differently altered in moderate and severe hypothyroidism. J Clin Endocrinol Metab 2001; 86(2): 732–7

    Article  PubMed  CAS  Google Scholar 

  191. Chadarevian R, Bruckert E, Giral P, et al. Relationship between thyroid hormones and fibrinogen levels. Blood Coagul Fibrinolysis 1999; 10(8): 481–6

    Article  PubMed  CAS  Google Scholar 

  192. Rennie JA, Bewsher PD, Murchison LE, et al. Coagulation and fibrinolysis in thyroid disease. Acta Haematol 1978; 59(3): 171–7

    Article  PubMed  CAS  Google Scholar 

  193. Ford HC, Carter JM. Haemostasis in hypothyroidism. Postgrad Med J 1990; 66(774): 280–4

    Article  PubMed  CAS  Google Scholar 

  194. Dalton RG, Dewar MS, Savidge GF, et al. Hypothyroidism as a cause of acquired von Willebrand’s disease. Lancet 1987; I (8540): 1007–9

    Article  Google Scholar 

  195. Tachman ML, GuthrieJr GP. Hypothyroidism: diversity of presentation. Endocr Rev 1984; 5(3): 456–65

    Article  PubMed  CAS  Google Scholar 

  196. Masunaga R, Nagasaka A, Nakai A, et al. Alteration of platelet aggregation in patients with thyroid disorders. Metabolism 1997; 46(10): 1128–31

    Article  PubMed  CAS  Google Scholar 

  197. Hellem AJ, Segaard E, Solem JH. The adhesiveness of human blood platelets and thyroid function. Acta Med Scand 1975; 197(1–2): 15–7

    PubMed  CAS  Google Scholar 

  198. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336(14): 973–9

    Article  PubMed  CAS  Google Scholar 

  199. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342(12): 836–43

    Article  PubMed  CAS  Google Scholar 

  200. Dardano A, Caraccio N, Virdis A, et al. Systemic inflammation and endothelial dysfunction in patients with Hashimoto’s thyroiditis and subclinical hypothyroidism [abstract]. J Endocrinol Invest 2004; 27Suppl. 5: S15

    Google Scholar 

  201. Wang HC, Dragoo J, Zhou Q, et al. An intrinsic thyrotropin-mediated pathway of TNF-alpha production by bone marrow cells. Blood 2003; 101(1): 119–23

    Article  PubMed  CAS  Google Scholar 

  202. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999; 341(8): 549–55

    Article  PubMed  CAS  Google Scholar 

  203. Lincoln SR, Ke RW, Kutteh WH. Screening for hypothyroidism in infertile women. J Reprod Med 1999; 44(5): 455–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Monzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monzani, F., Dardano, A. & Caraccio, N. Does Treating Subclinical Hypothyroidism Improve Markers of Cardiovascular Risk?. Mol Diag Ther 5, 65–81 (2006). https://doi.org/10.2165/00024677-200605020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200605020-00001

Keywords

Navigation