High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway

Lipids Health Dis. 2011 Apr 19:10:60. doi: 10.1186/1476-511X-10-60.

Abstract

Background: Hyperhomocysteinemia (HHcy) causes increased oxidative stress and is an independent risk factor for cardiovascular disease. Oxidative stress is now believed to be a major contributory factor in the development of non alcoholic fatty liver disease, the most common liver disorder worldwide. In this study, the changes which occur in homocysteine (Hcy) metabolism in high fat-diet induced non alcoholic fatty liver disease (NAFLD) in rats were investigated.

Methods and results: After feeding rats a standard low fat diet (control) or a high fat diet (57% metabolisable energy as fat) for 18 weeks, the concentration of homocysteine in the plasma was significantly raised while that of cysteine was lowered in the high fat as compared to the control diet fed animals. The hepatic activities of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGS), the enzymes responsible for the breakdown of homocysteine to cysteine via the transsulphuration pathway in the liver, were also significantly reduced in the high fat-fed group.

Conclusions: These results indicate that high fat diet-induced NAFLD in rats is associated with increased plasma Hcy levels caused by down-regulation of hepatic CBS and CGL activity. Thus, HHcy occurs at an early stage in high fat diet-induced NAFLD and is likely to contribute to the increased risk of cardiovascular disease associated with the condition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cystathionine beta-Synthase / metabolism
  • Cystathionine gamma-Lyase / metabolism
  • Dietary Fats*
  • Down-Regulation
  • Fatty Liver / etiology*
  • Fatty Liver / metabolism
  • Homocysteine / blood
  • Hyperhomocysteinemia / etiology*
  • Hyperhomocysteinemia / metabolism
  • Insulin / blood
  • Liver / metabolism
  • Male
  • Metabolic Networks and Pathways*
  • Methyltransferases / genetics
  • Methyltransferases / metabolism
  • Non-alcoholic Fatty Liver Disease
  • Rats
  • Rats, Wistar
  • Transcription, Genetic
  • Triglycerides / metabolism

Substances

  • Dietary Fats
  • Insulin
  • Triglycerides
  • Homocysteine
  • Methyltransferases
  • Cystathionine beta-Synthase
  • Cystathionine gamma-Lyase